scholarly journals Complete hematologic remissions induced by 2-chlorodeoxyadenosine in children with newly diagnosed acute myeloid leukemia

Blood ◽  
1994 ◽  
Vol 84 (4) ◽  
pp. 1237-1242 ◽  
Author(s):  
VM Santana ◽  
CA Hurwitz ◽  
RL Blakley ◽  
WR Crom ◽  
X Luo ◽  
...  

Abstract The majority of children with acute myeloid leukemia (AML) who are treated exclusively with chemotherapy die of progressive disease. Improvement in outcome will likely require new active drugs capable of eradicating resistant blast cells early in the clinical course. We therefore assessed the cytoreductive potential of 2- chlorodeoxyadenosine (2-CdA), a halogenated purine analogue, in 22 consecutive children with newly diagnosed AML. The drug was administered as a single 120-hour continuous infusion (8.9 mg/m2 of body surface area per day) before the introduction of standard remission induction therapy. Six patients (27%) had complete hematologic remissions by a median of 21 days after treatment with the nucleoside (range, 14 to 33 days). Seven others had partial responses, yielding a total response rate of 59%. The drug also eliminated leukemic cells from cerebrospinal fluid in 4 of the 6 patients tested. Concentrations of 2-CdA in cerebrospinal fluid on day 5 after the initiation of treatment ranged from 12.4% to 38.0% (mean, 22.7%) of the steady-state plasma concentrations. Severe but reversible myelosuppression and thrombocytopenia developed in all patients. Analysis of factors that may have influenced the complete remission rate suggested a better outcome in patients with myeloblastic leukemia (M0-M2 subtypes in the revised French-American-British classification system). These results demonstrate clinically significant activity by 2- CdA against previously untreated AML in children, including leukemic blast cells in the central nervous system. Its use in combination chemotherapy may improve the outlook for patients with this often fatal hematologic cancer.

Blood ◽  
1994 ◽  
Vol 84 (4) ◽  
pp. 1237-1242 ◽  
Author(s):  
VM Santana ◽  
CA Hurwitz ◽  
RL Blakley ◽  
WR Crom ◽  
X Luo ◽  
...  

The majority of children with acute myeloid leukemia (AML) who are treated exclusively with chemotherapy die of progressive disease. Improvement in outcome will likely require new active drugs capable of eradicating resistant blast cells early in the clinical course. We therefore assessed the cytoreductive potential of 2- chlorodeoxyadenosine (2-CdA), a halogenated purine analogue, in 22 consecutive children with newly diagnosed AML. The drug was administered as a single 120-hour continuous infusion (8.9 mg/m2 of body surface area per day) before the introduction of standard remission induction therapy. Six patients (27%) had complete hematologic remissions by a median of 21 days after treatment with the nucleoside (range, 14 to 33 days). Seven others had partial responses, yielding a total response rate of 59%. The drug also eliminated leukemic cells from cerebrospinal fluid in 4 of the 6 patients tested. Concentrations of 2-CdA in cerebrospinal fluid on day 5 after the initiation of treatment ranged from 12.4% to 38.0% (mean, 22.7%) of the steady-state plasma concentrations. Severe but reversible myelosuppression and thrombocytopenia developed in all patients. Analysis of factors that may have influenced the complete remission rate suggested a better outcome in patients with myeloblastic leukemia (M0-M2 subtypes in the revised French-American-British classification system). These results demonstrate clinically significant activity by 2- CdA against previously untreated AML in children, including leukemic blast cells in the central nervous system. Its use in combination chemotherapy may improve the outlook for patients with this often fatal hematologic cancer.


Blood ◽  
1986 ◽  
Vol 68 (1) ◽  
pp. 41-45 ◽  
Author(s):  
R Delwel ◽  
I Touw ◽  
F Bot ◽  
B Lowenberg

Abstract The reactivity of acute myeloid leukemia cells (AML) was determined in 29 patients using the fucose binding lectin Ulex europaeus agglutinin (UEA) as surface marker. We show a marked heterogeneity in the UEA- binding abilities of the cells in these patients as determined by fluorescence analysis of the blasts labeled with the UEA coupled to the fluorescent molecule FITC. The results suggest a correlation between the capability of AML blast cells to bind UEA and cytologic maturation, because in 1 of 10 M1, 3 of 8 M2, 6 of 8 M4, and 1 of 3 M5 cytology types UEA binding to the leukemic cells was apparent. In 13 cases, the cells gave rise to colonies in vitro. The amount of UEA binding to AML colony-forming cells (AML-CFU) was determined by cell sorting and subsequent colony culture of UEA-negative, intermediately positive, and highly fluorescent cells. AML-CFU from none of the four patients with M1 cytology were UEA positive, whereas they showed intense reactivity with the lectin in 1 of 4 cases with M2 cytology and in all 4 cases of M4. In these five cases with strongly UEA positive AML-CFU, the fluorescence distribution of the colony formers differed from that of the total leukemia population, indicating that AML-CFU represent a subpopulation of AML cells with specific UEA-binding properties. Normal bone marrow myeloid and multipotential colony-forming cells (CFU-GM, CFU-GEMM) showed low or no binding of UEA. UEA-FITC appears a useful reagent for membrane analysis of AML-CFU. In certain cases, UEA-FITC labeling may be applied to discriminate AML-CFU from normal hematopoietic progenitors.


1988 ◽  
Vol 6 (5) ◽  
pp. 802-812 ◽  
Author(s):  
E Kokenberg ◽  
P Sonneveld ◽  
W Sizoo ◽  
A Hagenbeek ◽  
B Löwenberg

In an attempt to identify pharmacokinetic factors that determine the response of acute myeloid leukemia (AML) patients to induction chemotherapy, we determined the concentrations of daunorubicin (DNR) and the main metabolite daunorubicinol (DOL) in vivo and particularly evaluated the concentrations in blood and bone marrow nucleated cells. Cell measurements were obtained in 37 evaluable patients during their first remission induction treatment with DNR and cytarabine (ara-C) and directly compared with the plasma distribution kinetics of DNR. We show that (1) plasma DNR concentrations do not correlate with DNR concentrations in bone marrow nucleated cells; but (2) plasma area under the curve (AUC) values of DNR correlate inversely (P less than .01) with AUC values of DNR in WBCs; (3) concentrations of DNR in WBCs correlate positively (P less than .01) with DNR concentrations in bone marrow nucleated cells; and (4) the concentrations of DNR in WBCs show a negative correlation (P less than .01) with the numbers of peripheral blast cells at diagnosis. We then tested whether the pharmacokinetic parameters had predictive value for the clinical outcome of therapy, but none of the plasma levels or WBC and bone marrow concentrations of DNR predicted treatment outcome. The inverse correlation between the concentrations of DNR in WBC and the numbers of peripheral blast cells suggests that the effective DNR concentrations achieved intracellularly are mainly a function of the tumor load so that lesser amounts of DNR accumulate intracellularly when the AML cell numbers in blood are higher.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1073-1073
Author(s):  
Hiroto Inaba ◽  
Jeffrey E Rubnitz ◽  
Elaine Coustan-Smith ◽  
Lie Li ◽  
Brian D Furmanski ◽  
...  

Abstract Abstract 1073 Background: Aberrant receptor tyrosine kinase (RTK) signaling arising from genetic abnormalities, such as FLT3-internal tandem duplications (FLT3-ITD), is an important mechanism in the development and growth of acute myeloid leukemia (AML) and is often associated with a poor outcome. Hence, inhibition of RTK signaling is an attractive novel treatment option, particularly for disease that is resistant to conventional chemotherapy. We evaluated the clinical activity of the multikinase inhibitor sorafenib in children with de novo FLT3-ITD–positive AML or relapsed/refractory AML. Methods: Fourteen patients were treated. Six patients with newly diagnosed FLT3- ITD–positive AML (aged 9–16 years; median, 12 years) received 2 cycles of remission induction therapy and then started sorafenib (200 mg/m2 twice daily for 20 days) the day after completing induction II (low-dose cytarabine, daunorubicin, and etoposide). Nine patients (aged 6–17 years; median, 9 years) with relapsed AML (including one treated on the above regimen) received sorafenib alone (2 dose levels; 200 and 150 mg/m2) twice daily for the first week of therapy, concurrently with clofarabine and cytarabine on days 8–12, and then alone from days 13 to 28. Sorafenib pharmacokinetics were analyzed at steady-state on day 8 of sorafenib in patients with newly diagnosed AML and on day 7 in patients with relapsed AML. In patients with relapsed AML, the effect of sorafenib on signaling pathways in AML cells was assessed by flow cytometry. Results: All 6 newly diagnosed patients, including 2 whose AML was refractory to induction I, achieved a complete remission (CR) after induction II; 5 had negative minimal residual disease (MRD; <0.1% AML cells in bone marrow) after induction II. Both patients in this group who relapsed achieved second remissions, one with sorafenib alone and one on the relapse regimen described above. Of the 9 patients with relapsed AML, 6 (4 with FLT3-ITD) were treated with sorafenib 200 mg/m2. All 6 had a >50% decrease in blast percentage and/or bone marrow cellularity after 1 week of sorafenib. After concurrent sorafenib and chemotherapy, 5 of the 9 patients with relapsed AML achieved CR (2 had negative MRD) and 2 achieved a partial remission (PR; 5%-25% AML cells in bone marrow); all 4 patients with FLT3-ITD had a CR or PR. After sorafenib treatment, 6 patients underwent HSCT while 2 with FLT3-ITD who could not receive HSCT were treated with single-agent sorafenib and have maintained CR for up to 8 months. Hand-foot skin reaction (HFSR) or rash occurred in all patients and improved with cessation of sorafenib. Dose-limiting toxicity (DLT, grade 3 HFSR and/or rash) was observed in 3 of the 6 patients with relapsed AML treated with 200 mg/m2 of sorafenib; no DLT was observed at 150 mg/m2. The effect of sorafenib on downstream RTK signaling was tested in the leukemic cells of 4 patients: in most samples, phosphorylation of S6 ribosomal protein and 4E-BP1 was inhibited. The mean (± SD) steady-state concentration (Css) of sorafenib was 3.3 ± 1.2 mg/L in the newly diagnosed group and 6.5 ± 3.6 mg/L (200 mg/m2) and 7.3 ± 3.6 mg/L (150 mg/m2) in those with relapsed AML. In both groups, the mean conversion of sorafenib to sorafenib N-oxide was 27%-35% (approximately 3 times greater than previously reported), and mean sorafenib N-oxide Css was 1.0–3.2 mg/L (2.1-6.7 μM). In a 442-kinase screen, the inhibitory profiles of sorafenib N-oxide and sorafenib were similar, and FLT3-ITD phosphorylation was potently inhibited by both forms (sorafenib N-oxide Kd = 0.070 μM; sorafenib Kd = 0.094 μM). Sorafenib N-oxide inhibited the growth of an AML cell line with FLT3-ITD (IC50 = 0.026 μM) and 4 AML cell lines with wild-type FLT3 (IC50 = 3.9–13.3 μM) at approximately half the potency of sorafenib. Conclusion: In children with de novo FLT3-ITD and relapsed/refractory AML, sorafenib given alone or with chemotherapy induced dramatic responses and inhibited aberrant RTK signaling in leukemic cells. Sorafenib and its active metabolite (sorafenib N-oxide) likely contribute to both efficacy and toxicity. These results warrant the incorporation of sorafenib into future pediatric AML trials. Disclosures: Inaba: Bayer/Onyx: Research Funding. Off Label Use: Sorafenib and clofarabine: both used for treatment of pediatric acute myeloid leukemia.


2018 ◽  
Vol 49 (1) ◽  
pp. 20-27
Author(s):  
Amina H Hassab ◽  
Dalia A Nafea ◽  
Rania S Swelem ◽  
Basma M Ghazal

AbstractBackgroundAcute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by a clonal expansion of myeloid blasts. Treatment strategies of patients with AML are based on various prognostic factors, including age and performance status of the patient, as well as cytogenetic and molecular characteristics of the leukemic clone.Our aim was to study the expression of cluster of differentiation (CD)25 in adult Egyptian patients with newly diagnosed AML and to assess its prognostic relevance.MethodsThis study was conducted on 50 newly diagnosed AML patients at the Hematology Unit, Internal Medicine Department, Alexandria Main University Hospital. All patients were subjected to full history taking, thorough clinical examination, and laboratory investigations, including detection of CD25 expression on blast cells by flow cytometry. Conventional karyotyping was done on 11 patients at the time of diagnosis.ResultsIn our study group, 12 patients were positive for CD25 expression, and this positivity was associated with worse overall survival and shorter leukemia-free survival. On evaluating the response to treatment among CD25-positive AML patients with normal karyotype, they had lower complete remission rates and higher relapse and death rates.ConclusionsExpression of CD25 in AML patients at presentation can be considered a poor independent prognostic factor.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5168-5168
Author(s):  
Ching-Tien Peng

Yu-Nan Huang1, Kang-Hsi Wu4, Te-fu Weng4, Su-Ching Liu4, Hui-Chih Hung1*, Ching-Tien Peng4,5* FLT3 internal tandem duplication (FLT3-ITD) mutations in patients with acute myeloid leukemia (AML) are usually associated with other mutations resulting in unfavorable outcome. Tyrosine kinase inhibitors (TKI) have shown promising responses, however, these responses are almost transient in therapy-resistant AML. Here, we show that human mitochondrial NAD(P)+-dependent-malic enzyme 2 (ME2) have significantly increased in CD34+ cell of patients with AML. To determine how ME2 establish metabolic reprogramming of leukemogenesis, we performed a comprehensive analysis of metabolism in CRISPR-mediated ME2 knockout leukemic cells (THP-1 and MV4-11) and purified leukemic blast cells (CD34+) derived from patients with AML. We demonstrate that disrupting ME2 signaling exerts potent activities against proliferation, reduced oxidative metabolism and lactate metabolism. We also show that genetic inhibition of RUNX1/FLT3/ME2 markedly repressed AML cell leukemogenesis. In conclusion, our findings provide a rationale for clinical development of this strategy for treating RUNX1 and FLT3-mutated leukemic patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1986 ◽  
Vol 68 (1) ◽  
pp. 41-45 ◽  
Author(s):  
R Delwel ◽  
I Touw ◽  
F Bot ◽  
B Lowenberg

The reactivity of acute myeloid leukemia cells (AML) was determined in 29 patients using the fucose binding lectin Ulex europaeus agglutinin (UEA) as surface marker. We show a marked heterogeneity in the UEA- binding abilities of the cells in these patients as determined by fluorescence analysis of the blasts labeled with the UEA coupled to the fluorescent molecule FITC. The results suggest a correlation between the capability of AML blast cells to bind UEA and cytologic maturation, because in 1 of 10 M1, 3 of 8 M2, 6 of 8 M4, and 1 of 3 M5 cytology types UEA binding to the leukemic cells was apparent. In 13 cases, the cells gave rise to colonies in vitro. The amount of UEA binding to AML colony-forming cells (AML-CFU) was determined by cell sorting and subsequent colony culture of UEA-negative, intermediately positive, and highly fluorescent cells. AML-CFU from none of the four patients with M1 cytology were UEA positive, whereas they showed intense reactivity with the lectin in 1 of 4 cases with M2 cytology and in all 4 cases of M4. In these five cases with strongly UEA positive AML-CFU, the fluorescence distribution of the colony formers differed from that of the total leukemia population, indicating that AML-CFU represent a subpopulation of AML cells with specific UEA-binding properties. Normal bone marrow myeloid and multipotential colony-forming cells (CFU-GM, CFU-GEMM) showed low or no binding of UEA. UEA-FITC appears a useful reagent for membrane analysis of AML-CFU. In certain cases, UEA-FITC labeling may be applied to discriminate AML-CFU from normal hematopoietic progenitors.


Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2191-2197 ◽  
Author(s):  
A Raza ◽  
HD Preisler ◽  
R Day ◽  
Z Yasin ◽  
M White ◽  
...  

Abstract Cell cycle characteristics including labeling indices (LI), duration of S-phase (Ts), and total cell cycle time (Tc) were determined in 54 standard-risk, newly diagnosed patients with acute myeloid leukemia following an infusion of bromodeoxyuridine. Remission induction therapy consisting of cytosine arabinoside and daunomycin was then administered to all patients, followed by three courses of consolidation to those who achieved complete remissions (CR). Older patients appeared to have more rapidly cycling cells (P = .003). No unique cell cycle characteristics were identified for patients who achieved remission versus those who had resistant disease. However, the pretherapy cell cycle characteristics were a strong prognosticator for remission duration. CR patients were divided into those whose leukemic cell Tc were above median (A) and below median (B). Among 14 B patients, median duration of response was 211 days, and all relapsed by day 600. Among 18 A patients, the median has not as yet been reached, with nine patients in continuous complete remission (log rank P = .007, Wilcoxon P = .04). We conclude that cell cycle characteristics of leukemic cells play a role in determining remission duration, perhaps because the leukemic cells of the former patients regrow slowly between courses of chemotherapy.


Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2191-2197
Author(s):  
A Raza ◽  
HD Preisler ◽  
R Day ◽  
Z Yasin ◽  
M White ◽  
...  

Cell cycle characteristics including labeling indices (LI), duration of S-phase (Ts), and total cell cycle time (Tc) were determined in 54 standard-risk, newly diagnosed patients with acute myeloid leukemia following an infusion of bromodeoxyuridine. Remission induction therapy consisting of cytosine arabinoside and daunomycin was then administered to all patients, followed by three courses of consolidation to those who achieved complete remissions (CR). Older patients appeared to have more rapidly cycling cells (P = .003). No unique cell cycle characteristics were identified for patients who achieved remission versus those who had resistant disease. However, the pretherapy cell cycle characteristics were a strong prognosticator for remission duration. CR patients were divided into those whose leukemic cell Tc were above median (A) and below median (B). Among 14 B patients, median duration of response was 211 days, and all relapsed by day 600. Among 18 A patients, the median has not as yet been reached, with nine patients in continuous complete remission (log rank P = .007, Wilcoxon P = .04). We conclude that cell cycle characteristics of leukemic cells play a role in determining remission duration, perhaps because the leukemic cells of the former patients regrow slowly between courses of chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document