scholarly journals Chronic Lymphocytic Leukemia B Cells Are Resistant to the Apoptotic Effects of Transforming Growth Factor-β

Blood ◽  
1997 ◽  
Vol 89 (3) ◽  
pp. 941-947 ◽  
Author(s):  
Raymond S. Douglas ◽  
Renold J. Capocasale ◽  
Roberta J. Lamb ◽  
Peter C. Nowell ◽  
Jonni S. Moore

Abstract Chronic lymphocytic leukemia (CLL) is the most common leukemia of the western world and is characterized by a slowly progressing accumulation of clonal CD5+ B cells. Our laboratory has investigated the role of transforming growth factor-β (TGF-β) and interleukin-4 (IL-4) in the pathogenesis of B-cell expansion in CLL. In vitro addition of TGF-β did not increase spontaneous apoptosis of B cells from most CLL patients, as determined using the TUNEL method, compared with a twofold increase observed in cultures of normal B cells. There was similar expression of TGF-β type II receptors on both CLL B cells and normal B cells. In contrast to apoptosis, CLL B-cell proliferation was variably inhibited with addition of TGF-β. In vitro addition of IL-4, previously reported to promote CLL B-cell survival, dramatically reduced spontaneous apoptosis of CLL B cells compared with normal B cells. CLL B-cell expression of IL-4 receptors was increased compared to normal B cells. Thus, our results show aberrant apoptotic responses of CLL B cells to TGF-β and IL-4, perhaps contributing to the relative expansion of the neoplastic clone.

Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2655-2663 ◽  
Author(s):  
Jan A. Burger ◽  
Nobuhiro Tsukada ◽  
Meike Burger ◽  
Nathan J. Zvaifler ◽  
Marie Dell'Aquila ◽  
...  

A subset of blood cells from patients with B-cell chronic lymphocytic leukemia (CLL) spontaneously differentiates in vitro into large, round, or fibroblast-like adherent cells that display stromal cell markers, namely vimentin and STRO-1. These cells also express stromal cell–derived factor-1 (SDF-1), a CXC chemokine that ordinarily is secreted by marrow stromal cells. Leukemia B cells attach to these blood-derived adherent cells, down-modulate their receptors for SDF-1 (CXCR4), and are protected from undergoing spontaneous apoptosis in vitro. Neutralizing antibodies to SDF-1 inhibit this effect. Moreover, the rapid deterioration in the survival of CLL B cells, when separated from such cells, is mitigated by exogenous SDF-1. This chemokine also results in the rapid down-modulation of CXCR4 and activation of p44/42 mitogen-activated protein-kinase (ERK 1/2) by CLL B cells in vitro. It is concluded that the blood of patients with CLL contains cells that can differentiate into adherent nurse-like cells that protect leukemia cells from undergoing spontaneous apoptosis through an SDF-1–dependent mechanism. In addition to its recently recognized role in CLL B-cell migration, SDF-1–mediated CLL B-cell activation has to be considered a new mechanism involved in the microenvironmental regulation of CLL B-cell survival.


Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2655-2663 ◽  
Author(s):  
Jan A. Burger ◽  
Nobuhiro Tsukada ◽  
Meike Burger ◽  
Nathan J. Zvaifler ◽  
Marie Dell'Aquila ◽  
...  

Abstract A subset of blood cells from patients with B-cell chronic lymphocytic leukemia (CLL) spontaneously differentiates in vitro into large, round, or fibroblast-like adherent cells that display stromal cell markers, namely vimentin and STRO-1. These cells also express stromal cell–derived factor-1 (SDF-1), a CXC chemokine that ordinarily is secreted by marrow stromal cells. Leukemia B cells attach to these blood-derived adherent cells, down-modulate their receptors for SDF-1 (CXCR4), and are protected from undergoing spontaneous apoptosis in vitro. Neutralizing antibodies to SDF-1 inhibit this effect. Moreover, the rapid deterioration in the survival of CLL B cells, when separated from such cells, is mitigated by exogenous SDF-1. This chemokine also results in the rapid down-modulation of CXCR4 and activation of p44/42 mitogen-activated protein-kinase (ERK 1/2) by CLL B cells in vitro. It is concluded that the blood of patients with CLL contains cells that can differentiate into adherent nurse-like cells that protect leukemia cells from undergoing spontaneous apoptosis through an SDF-1–dependent mechanism. In addition to its recently recognized role in CLL B-cell migration, SDF-1–mediated CLL B-cell activation has to be considered a new mechanism involved in the microenvironmental regulation of CLL B-cell survival.


2002 ◽  
Vol 9 (2) ◽  
pp. 86-95 ◽  
Author(s):  
Denise A. Kaminski ◽  
John J. Letterio ◽  
Peter D. Burrows

Transforming growth factor β (TGFβ) can inhibit thein vitroproliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFβ1-/-mice. To evaluate TGFβ responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7)±TGFβ. Picomolar doses of TGFβ1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1-pre-B cells were sensitive to the inhibitory effects of TGFβ1. However, the large BP1+pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFβ1 is important for normal B cell developmentin vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2973-2979 ◽  
Author(s):  
Anne J. Novak ◽  
Richard J. Bram ◽  
Neil E. Kay ◽  
Diane F. Jelinek

B-cell chronic lymphocytic leukemia (B-CLL) is defined by the accumulation of CD5+ B cells in the periphery and bone marrow. This disease is not characterized by highly proliferative cells but rather by the presence of leukemic cells with significant resistance to apoptosis and, therefore, prolonged survival. B-lymphocyte stimulator (BLyS) is a newly identified tumor necrosis factor (TNF) family member shown to be critical for maintenance of normal B-cell development and homeostasis and it shares significant homology with another TNF superfamily member, APRIL. The striking effects of BLyS on normal B-cell maintenance and survival raises the possibility that it may be involved in pathogenesis and maintenance of hematologic malignancies, including B-CLL. In this study, we investigated the status of APRIL and BLyS expression, as well as their receptors, in this disease. All B-CLL patient cells studied expressed one or more of 3 known receptors for BLyS; however, the pattern of expression was variable. In addition, we demonstrate for the first time that B-CLL cells from a subset of patients aberrantly express BLyS and APRIL mRNA, whereas these molecules were not detectable in normal B cells. Furthermore, we provide in vitro evidence that BLyS protects B-CLL cells from apoptosis and enhances cell survival. Because these molecules are key regulators of B-cell homeostasis and tumor progression, leukemic cell autocrine expression of BLyS and APRIL may be playing an important role in the pathogenesis of this disease.


Blood ◽  
1996 ◽  
Vol 87 (3) ◽  
pp. 1022-1029 ◽  
Author(s):  
N Chaouchi ◽  
C Wallon ◽  
C Goujard ◽  
G Tertian ◽  
A Rudent ◽  
...  

Human interleukin-13 (IL-13) acts at different stages of the normal B- cell maturation pathway with a spectrum of biologic activities overlapping those of IL-4. B chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of slow-dividing and long-lived monoclonal B cells, arrested at the intermediate stage of their differentiation. In vitro, B-CLL cells exhibit a spontaneous apoptosis regulated by different cytokines. In this report, we show that IL-13 (10 to 200 ng/mL) acts directly on monoclonal B-CLL cells from 12 patients. (1) IL-13 enhances CD23 expression and induces soluble CD23 secretion by B-CLL cells but does not exhibit a growth factor activity. (2) IL-13 inhibits IL-2 responsiveness of B-CLL cells, activated either with IL-2 alone or through crosslinking of lgs or ligation of CD40 antigen. (3) IL-13 protects B-CLL cells from in vitro spontaneous apoptosis. The effects of IL-13 on neoplasic B cells were slightly less than those of IL-4 and occurred independently of the presence of IL-4. The present observations show that IL-13 may exhibit a negative regulatory effect on neoplasic B cells in contrast with that observed in normal B cells, and suggest that IL-13 could be an important factor in the pathogenesis of CLL by preventing the death of monoclonal B cells. Moreover, B-CLL may be an interesting model to study the regulation of the expression of IL-13 receptor and/or signal transduction pathways.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3584-3584
Author(s):  
Jan K. Davidson-Moncada ◽  
Taotao Zhang ◽  
Piali Mukherjee ◽  
Paul Hakimpour ◽  
Richard R. Furman ◽  
...  

Abstract Abstract 3584 Chronic lymphocytic leukemia (CLL) is typically characterized by defects in programmed cell death rather than alterations in cell cycle regulation. Transforming growth factor β (TGFβ), a ubiquitously expressed growth factor, regulates multiple normal cellular responses including proliferation, differentiation, migration and apoptosis. Loss of growth inhibition by TGFβ is thought to contribute to the development and progression of a variety of tumors including CLL (DeCoteau et al., PNAS 1997). Approximately 40% of patients contain mutations in the signal sequence of TGFβ receptor 1 (TBR-1) in the form of substitutions or deletions (Schiemann et al., Cancer Detect Prev 2004). In the wild type form, the signal sequence contains a nine alanine stretch, which if truncated has been shown to impair signaling through the receptor and specifically, a truncated, six alanine form is associated with increased cancer risk (Pasche et al., Cancer Res 1999). TGFβ signaling can regulate expression of micoRNAs (miRNA), which are ~22 nucleotide-long RNA gene regulators. Deregulated miRNA expression has been implicated in tumorigenesis, including CLL. Several miRNAs have been shown to be over-expressed in CLL as compared to normal B cells (Fulci et al., Blood 2007). This includes miR-155, which is part of a 13-miRNA signature that has prognostic implications, including a shorter need-for-treatment interval (Calin et al., N Engl J Med 2005). Interestingly, miR-155 has been shown to be upregulated by TGFβ in murine mammary gland cells (Kong et al., Mol Cell Biol 2008). The goals of our study are to investigate the link between TGFβ signaling and miR-155 in CLL and to determine how the interaction between the two may contribute to the pathogenesis of CLL. Here we show that miR-155 is in fact upregulated by TGFβ in mouse splenic B cells and in human peripheral blood B cells. In CLL, miR-155 expression inversely correlates with the proportion of CLL cells harboring signal sequence mutation in TBR-1, consistent with miR155 regulation by TGFβ in vivo. To understand the role of TGFβ-induced miR-155 in CLL pathobiology, identification of specific target genes in the context of this disease is essential. To this end, we compared the gene (cDNA) expression profile between CLL with high miR-155 vs. low miR-155 expression and identified putative miR-155 target genes by selecting those genes that are differentially expressed in SAM analysis with lower expression in the high miR-155 group, and which harbor predicted miR-155 binding sites in their 3’ untranslated region (UTR). Based on this algorithm, we have identified casein kinase 1 gamma 2 (CSK1γ2) as a target for miR155 in CLL. CSK1γ2 is a negative modulator of the TGFβ signaling pathway by targeting the phosphorylated form of SMAD3 for degradation (Guo et al., Oncogene 2008). MiR-155 represses luciferase reporter gene expression by specific binding to the miR-155 site in the CSK1γ2 3’UTR. In addition, we found that CSK1γ2 itself is upregulated in B cells upon TGFβ stimulation, and treatment of human B cells with PNA miR-155 inhibitor (Fabani et al., Nucleic Acids Research 2010) further increases CSK1γ2 mRNA levels. Surprisingly, comparison of CSK1γ2 protein levels between CLLs with high or low miR-155 by Western blotting revealed higher CSK1γ2 protein expression despite lower CSK1γ2 mRNA levels, suggesting that miR-155 may enhance CSK1γ2 translation in CLL cells and implying an intriguing regulatory interaction between miR-155 and CSK1γ2. In summary, our data indicates that the variation of miR-155 seen in CLL is primarily a function of TGFβ signaling activity. Moreover, miR-155 is an important player in a complex auto-regulatory network in TGFβ signaling by fine-tuning the negative feedback mechanism on TGFβ signaling mediated by CSK1γ2. In CLL cells harboring TBR-1 with wild-type signal sequence, higher miR-155 levels may help modulate the TGFβ signaling activity to a level optimal for the survival or other pathobiological functions of CLL. Furthermore, since CLL cells are predominantly non-proliferating, our findings that miR-155 may enhance translation of CSK1γ2 provide support to the model of cell cycle dependence of microRNA functions (Vasudevan et al., Cell Cycle 2008). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 1063-1070 ◽  
Author(s):  
Mohammad-Reza Rezvany ◽  
Mahmood Jeddi-Tehrani ◽  
Hans Wigzell ◽  
Anders Österborg ◽  
Håkan Mellstedt

Abstract T-cell receptor–B-variable (TCR-BV) gene usage and the CDR3 size distribution pattern were analyzed by reverse transcription–polymerase chain reaction (RT-PCR) in patients with B-cell chronic lymphocytic leukemia (B-CLL) to assess the T-cell repertoire. The use of TCR-BV families in CD4 and CD8 T cells stimulated with autologous activated leukemic cells was compared with that of freshly obtained blood T cells. Overexpression of individual TCR-BV families was found in freshly isolated CD4 and CD8 T cells. Polyclonal, oligoclonal, and monoclonal TCR-CDR3 patterns were seen within such overexpressed native CD4 and CD8 TCR-BV families. In nonoverexpressed TCR-BV families, monoclonal and oligoclonal populations were noted only within the CD8 subset. After in vitro stimulation of T cells with autologous leukemic B cells, analyses of the CDR3 length patterns showed that in expanded TCR-BV populations, polyclonal patterns frequently shifted toward a monoclonal/oligoclonal profile, whereas largely monoclonal patterns in native overexpressed TCR-BV subsets remained monoclonal. Seventy-five percent of CD8 expansions found in freshly obtained CD8 T cells further expanded on in vitro stimulation with autologous leukemic B cells. This suggests a memory status of such cells. In contrast, the unusually high frequency of CD4 T-cell expansions found in freshly isolated peripheral blood cells did not correlate positively to in vitro stimulation as only 1 of 9 expansions continued to expand. Our data suggest that leukemia cell–specific memory CD4 and CD8 T cells are present in vivo of patients with CLL and that several leukemia cell–associated antigens/epitopes are recognized by the patients' immune system, indicating that whole leukemia cells might be of preference for vaccine development.


Sign in / Sign up

Export Citation Format

Share Document