MicroRNA-155 Modulates Transforming Growth Factor-β Signaling In Chronic Lymphocytic Leukemia through Targeting of Casein Kinase γ Isoform 2

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3584-3584
Author(s):  
Jan K. Davidson-Moncada ◽  
Taotao Zhang ◽  
Piali Mukherjee ◽  
Paul Hakimpour ◽  
Richard R. Furman ◽  
...  

Abstract Abstract 3584 Chronic lymphocytic leukemia (CLL) is typically characterized by defects in programmed cell death rather than alterations in cell cycle regulation. Transforming growth factor β (TGFβ), a ubiquitously expressed growth factor, regulates multiple normal cellular responses including proliferation, differentiation, migration and apoptosis. Loss of growth inhibition by TGFβ is thought to contribute to the development and progression of a variety of tumors including CLL (DeCoteau et al., PNAS 1997). Approximately 40% of patients contain mutations in the signal sequence of TGFβ receptor 1 (TBR-1) in the form of substitutions or deletions (Schiemann et al., Cancer Detect Prev 2004). In the wild type form, the signal sequence contains a nine alanine stretch, which if truncated has been shown to impair signaling through the receptor and specifically, a truncated, six alanine form is associated with increased cancer risk (Pasche et al., Cancer Res 1999). TGFβ signaling can regulate expression of micoRNAs (miRNA), which are ~22 nucleotide-long RNA gene regulators. Deregulated miRNA expression has been implicated in tumorigenesis, including CLL. Several miRNAs have been shown to be over-expressed in CLL as compared to normal B cells (Fulci et al., Blood 2007). This includes miR-155, which is part of a 13-miRNA signature that has prognostic implications, including a shorter need-for-treatment interval (Calin et al., N Engl J Med 2005). Interestingly, miR-155 has been shown to be upregulated by TGFβ in murine mammary gland cells (Kong et al., Mol Cell Biol 2008). The goals of our study are to investigate the link between TGFβ signaling and miR-155 in CLL and to determine how the interaction between the two may contribute to the pathogenesis of CLL. Here we show that miR-155 is in fact upregulated by TGFβ in mouse splenic B cells and in human peripheral blood B cells. In CLL, miR-155 expression inversely correlates with the proportion of CLL cells harboring signal sequence mutation in TBR-1, consistent with miR155 regulation by TGFβ in vivo. To understand the role of TGFβ-induced miR-155 in CLL pathobiology, identification of specific target genes in the context of this disease is essential. To this end, we compared the gene (cDNA) expression profile between CLL with high miR-155 vs. low miR-155 expression and identified putative miR-155 target genes by selecting those genes that are differentially expressed in SAM analysis with lower expression in the high miR-155 group, and which harbor predicted miR-155 binding sites in their 3’ untranslated region (UTR). Based on this algorithm, we have identified casein kinase 1 gamma 2 (CSK1γ2) as a target for miR155 in CLL. CSK1γ2 is a negative modulator of the TGFβ signaling pathway by targeting the phosphorylated form of SMAD3 for degradation (Guo et al., Oncogene 2008). MiR-155 represses luciferase reporter gene expression by specific binding to the miR-155 site in the CSK1γ2 3’UTR. In addition, we found that CSK1γ2 itself is upregulated in B cells upon TGFβ stimulation, and treatment of human B cells with PNA miR-155 inhibitor (Fabani et al., Nucleic Acids Research 2010) further increases CSK1γ2 mRNA levels. Surprisingly, comparison of CSK1γ2 protein levels between CLLs with high or low miR-155 by Western blotting revealed higher CSK1γ2 protein expression despite lower CSK1γ2 mRNA levels, suggesting that miR-155 may enhance CSK1γ2 translation in CLL cells and implying an intriguing regulatory interaction between miR-155 and CSK1γ2. In summary, our data indicates that the variation of miR-155 seen in CLL is primarily a function of TGFβ signaling activity. Moreover, miR-155 is an important player in a complex auto-regulatory network in TGFβ signaling by fine-tuning the negative feedback mechanism on TGFβ signaling mediated by CSK1γ2. In CLL cells harboring TBR-1 with wild-type signal sequence, higher miR-155 levels may help modulate the TGFβ signaling activity to a level optimal for the survival or other pathobiological functions of CLL. Furthermore, since CLL cells are predominantly non-proliferating, our findings that miR-155 may enhance translation of CSK1γ2 provide support to the model of cell cycle dependence of microRNA functions (Vasudevan et al., Cell Cycle 2008). Disclosures: No relevant conflicts of interest to declare.

Oncogene ◽  
2021 ◽  
Author(s):  
Panagiotis Papoutsoglou ◽  
Dorival Mendes Rodrigues-Junior ◽  
Anita Morén ◽  
Andrew Bergman ◽  
Fredrik Pontén ◽  
...  

AbstractActivation of the transforming growth factor β (TGFβ) pathway modulates the expression of genes involved in cell growth arrest, motility, and embryogenesis. An expression screen for long noncoding RNAs indicated that TGFβ induced mir-100-let-7a-2-mir-125b-1 cluster host gene (MIR100HG) expression in diverse cancer types, thus confirming an earlier demonstration of TGFβ-mediated transcriptional induction of MIR100HG in pancreatic adenocarcinoma. MIR100HG depletion attenuated TGFβ signaling, expression of TGFβ-target genes, and TGFβ-mediated cell cycle arrest. Moreover, MIR100HG silencing inhibited both normal and cancer cell motility and enhanced the cytotoxicity of cytostatic drugs. MIR100HG overexpression had an inverse impact on TGFβ signaling responses. Screening for downstream effectors of MIR100HG identified the ligand TGFβ1. MIR100HG and TGFB1 mRNA formed ribonucleoprotein complexes with the RNA-binding protein HuR, promoting TGFβ1 cytokine secretion. In addition, TGFβ regulated let-7a-2–3p, miR-125b-5p, and miR-125b-1–3p expression, all encoded by MIR100HG intron-3. Certain intron-3 miRNAs may be involved in TGFβ/SMAD-mediated responses (let-7a-2–3p) and others (miR-100, miR-125b) in resistance to cytotoxic drugs mediated by MIR100HG. In support of a model whereby TGFβ induces MIR100HG, which then enhances TGFβ1 secretion, analysis of human carcinomas showed that MIR100HG expression correlated with expression of TGFB1 and its downstream extracellular target TGFBI. Thus, MIR100HG controls the magnitude of TGFβ signaling via TGFβ1 autoinduction and secretion in carcinomas.


Blood ◽  
1997 ◽  
Vol 89 (3) ◽  
pp. 941-947 ◽  
Author(s):  
Raymond S. Douglas ◽  
Renold J. Capocasale ◽  
Roberta J. Lamb ◽  
Peter C. Nowell ◽  
Jonni S. Moore

Abstract Chronic lymphocytic leukemia (CLL) is the most common leukemia of the western world and is characterized by a slowly progressing accumulation of clonal CD5+ B cells. Our laboratory has investigated the role of transforming growth factor-β (TGF-β) and interleukin-4 (IL-4) in the pathogenesis of B-cell expansion in CLL. In vitro addition of TGF-β did not increase spontaneous apoptosis of B cells from most CLL patients, as determined using the TUNEL method, compared with a twofold increase observed in cultures of normal B cells. There was similar expression of TGF-β type II receptors on both CLL B cells and normal B cells. In contrast to apoptosis, CLL B-cell proliferation was variably inhibited with addition of TGF-β. In vitro addition of IL-4, previously reported to promote CLL B-cell survival, dramatically reduced spontaneous apoptosis of CLL B cells compared with normal B cells. CLL B-cell expression of IL-4 receptors was increased compared to normal B cells. Thus, our results show aberrant apoptotic responses of CLL B cells to TGF-β and IL-4, perhaps contributing to the relative expansion of the neoplastic clone.


Author(s):  
Cristina Arce ◽  
Isaac Rodríguez-Rovira ◽  
Karo De Rycke ◽  
Karina Durán ◽  
Victoria Campuzano ◽  
...  

Objective: We investigated the effect of a potent TGFβ (transforming growth factor β) inhibitor peptide (P144) from the betaglycan/TGFβ receptor III on aortic aneurysm development in a Marfan syndrome mouse model. Approach and Results: We used a chimeric gene encoding the P144 peptide linked to apolipoprotein A-I via a flexible linker expressed by a hepatotropic adeno-associated vector. Two experimental approaches were performed: (1) a preventive treatment where the vector was injected before the onset of the aortic aneurysm (aged 4 weeks) and followed-up for 4 and 20 weeks and (2) a palliative treatment where the vector was injected once the aneurysm was formed (8 weeks old) and followed-up for 16 weeks. We evaluated the aortic root diameter by echocardiography, the aortic wall architecture and TGFβ signaling downstream effector expression of pSMAD2 and pERK1/2 by immunohistomorphometry, and Tgfβ1 and Tgfβ2 mRNA expression levels by real-time polymerase chain reaction. Marfan syndrome mice subjected to the preventive approach showed no aortic dilation in contrast to untreated Marfan syndrome mice, which at the same end point age already presented the aneurysm. In contrast, the palliative treatment with P144 did not halt aneurysm progression. In all cases, P144 improved elastic fiber morphology and normalized pERK1/2-mediated TGFβ signaling. Unlike the palliative treatment, the preventive treatment reduced Tgfβ1 and Tgfβ2 mRNA levels. Conclusions: P144 prevents the onset of aortic aneurysm but not its progression. Results indicate the importance of reducing the excess of active TGFβ signaling during the early stages of aortic disease progression.


2001 ◽  
Vol 21 (12) ◽  
pp. 3901-3912 ◽  
Author(s):  
Kazuya Shimizu ◽  
Pierre-Yves Bourillot ◽  
Søren J. Nielsen ◽  
Aaron M. Zorn ◽  
J. B. Gurdon

ABSTRACT Transforming growth factor β (TGFβ) signaling is transduced via Smad2–Smad4–DNA-binding protein complexes which bind to responsive elements in the promoters of target genes. However, the mechanism of how the complexes activate the target genes is unclear. Here we identify Xenopus Swift, a novel nuclear BRCT (BRCA1 C-terminal) domain protein that physically interacts with Smad2 via its BRCT domains. We examine the activity of Swift in relation to gene activation in Xenopus embryos. Swift mRNA has an expression pattern similar to that of Smad2. Swift has intrinsic transactivation activity and activates target gene transcription in a TGFβ-Smad2-dependent manner. Inhibition of Swift activity results in the suppression of TGFβ-induced gene transcription and defective mesendoderm development. Blocking Swift function affects neither bone morphogenic protein nor fibroblast growth factor signaling during early development. We conclude that Swift is a novel coactivator of Smad2 and that Swift has a critical role in embryonic TGFβ-induced gene transcription. Our results suggest that Swift may be a general component of TGFβ signaling.


2007 ◽  
Vol 67 (4) ◽  
pp. 559-562 ◽  
Author(s):  
K Warstat ◽  
T Pap ◽  
G Klein ◽  
S Gay ◽  
W K Aicher

We showed previously that the attachment of synovial fibroblasts to laminin (LM)-111 in the presence of transforming growth factor-β induces significant expression of the matrix metalloproteinase (MMP)-3. Here we go on to investigate the regulation of additional MMPs and their specific tissue inhibitors of matrix proteases (TIMPs). Changes in steady-state mRNA levels encoding TIMPs and MMPs were investigated by quantitative reverse transcription–polymerase chain reaction. Production of MMPs was monitored by a multiplexed immunoarray. Signal transduction pathways were studied by immunoblotting. Attachment of synovial fibroblasts to LM-111 in the presence of transforming growth factor-β induced significant increases in MMP-3 mRNA (12.35-fold, p<0.001) and protein (mean 62 ng/ml, sixfold, p<0.008) and in expression of MMP-10 mRNA (11.68-fold, p<0.05) and protein (54 ng/ml, 20-fold, p⩾0.02). All other TIMPs and MMPs investigated failed to show this LM-111-facilitated transforming growth factor-β response. No phosphorylation of nuclear factor-κB was observed. We conclude that co-stimulation of synovial fibroblasts by LM-111 together with transforming growth factor-β suffices to induce significant expression of MMP-3 and MMP-10 by synovial fibroblasts and that this induction is independent of nuclear factor-κB phosphorylation.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2708-2715 ◽  
Author(s):  
Taku Kouro ◽  
Kay L. Medina ◽  
Kenji Oritani ◽  
Paul W. Kincade

Abstract Recently, a collection of surface markers was exploited to isolate viable Lin− TdT+ cells from murine bone marrow. These early pro-B cells were enriched for B-lineage lymphocyte precursor activity measured by short-term culture and had little responsiveness to myeloid growth factors. Early precursors can be propagated with remarkably high cloning frequencies in stromal cell–free, serum-free cultures, permitting this analysis of direct regulatory factors. Expression of the interleukin-7 receptor (IL-7Rα) chain marks functional precursors and IL-7 is necessary for progression beyond the CD45RA+ CD19− stage. Efficient survival and differentiation were only observed when stem cell factor and Flt-3 ligand were also present. IL-7–responsive CD19+precursors are estrogen resistant. However, B-lineage differentiation was selectively abrogated when highly purified Lin− precursors were treated with hormone in the absence of stromal cells. In addition, early stages of B lymphopoiesis were arrested by limitin, a new interferon (IFN)–like cytokine as well as IFN-α, IFN-γ, or transforming growth factor β (TGF-β), but not by epidermal growth factor (EGF). Lin− TdT+early pro-B cells are shown here to be CD27+AA4.1+/−Ki-67+ Ly-6C−Ly-6A/Sca-1Lo/−Thy-1−CD43+CD4+/−CD16/32Lo/−CD44Hi and similar in some respects to the “common lymphoid progenitors” (CLP) identified by others. Although early pro-B cells have lost myeloid differentiation potential, transplantation experiments described here reveal that at least some can generate T lymphocytes. Of particular importance is the demonstration that a pivotal early stage of lymphopoiesis is directly sensitive to negative regulation by hormones and cytokines.


2016 ◽  
Vol 28 (12) ◽  
pp. 1873 ◽  
Author(s):  
Xiao-Feng Sun ◽  
Xing-Hong Sun ◽  
Shun-Feng Cheng ◽  
Jun-Jie Wang ◽  
Yan-Ni Feng ◽  
...  

The Notch and transforming growth factor (TGF)-β signalling pathways play an important role in granulosa cell proliferation. However, the mechanisms underlying the cross-talk between these two signalling pathways are unknown. Herein we demonstrated a functional synergism between Notch and TGF-β signalling in the regulation of preantral granulosa cell (PAGC) proliferation. Activation of TGF-β signalling increased hairy/enhancer-of-split related with YRPW motif 2 gene (Hey2) expression (one of the target genes of the Notch pathway) in PAGCs, and suppression of TGF-β signalling by Smad3 knockdown reduced Hey2 expression. Inhibition of the proliferation of PAGCs by N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester (DAPT), an inhibitor of Notch signalling, was rescued by both the addition of ActA and overexpression of Smad3, indicating an interaction between the TGF-β and Notch signalling pathways. Co-immunoprecipitation (CoIP) and chromatin immunoprecipitation (ChIP) assays were performed to identify the point of interaction between the two signalling pathways. CoIP showed direct protein–protein interaction between Smad3 and Notch2 intracellular domain (NICD2), whereas ChIP showed that Smad3 could be recruited to the promoter regions of Notch target genes as a transcription factor. Therefore, the findings of the present study support the idea that nuclear Smad3 protein can integrate with NICD2 to form a complex that acts as a transcription factor to bind specific DNA motifs in Notch target genes, such as Hey1 and Hey2, and thus participates in the transcriptional regulation of Notch target genes, as well as regulation of the proliferation of PAGCs.


Sign in / Sign up

Export Citation Format

Share Document