The Hemoglobin-Deficit Mouse: Analysis of Phenotype and Hematopoiesis in the Transplant Model

Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 2062-2067 ◽  
Author(s):  
Michael L. Bloom ◽  
Karen L. Simon-Stoos

Abstract The mouse mutant hemoglobin deficit (gene symbol hbd ) is characterized by a severe microcytic anemia that is inherited in an autosomal-recessive manner. To assess the mutation's effect on hematopoiesis, unfractionated bone marrow (BM) from either a mutant C57BL6/J-hbd/hbd, Gpi1b/Gpi1b (phenotype symbol HBD), or normal C57BL6/J -+hbd/+hbd, Gpi1b/Gpi1b mouse was injected intravenously into irradiated congenic C57BL6/J-+hbd/+hbd, Gpi1a/Gpi1a, Igha/Igha, Thy1a/Thy1a mice. The congenic recipients of mutant or normal marrow obtained complete red blood cell (RBC) and leukocyte reconstitution, with the exception of one recipient of HBD marrow. After 24 weeks posttransplantation, the normal recipients of HBD marrow obtained a microcytic anemia similar to the donor. These results suggest that the HBD phenotype is caused by a BM defect. We observed that the erythroid lineage derived from donor HBD marrow repopulated more slowly than the normal marrow at 4 weeks posttransplantation. To determine if this difference was a result of an erythropoietic defect, competitive repopulation was performed using either mutant or normal marrow competed against normal congenic marrow. For the erythroid lineage, no significant contribution from HBD marrow was observed. To assess if the RBC block was based on a deficiency of myeloid progenitors, both in vitro and in vivo assays were performed: absolute numbers of bone progenitors were increased, suggesting that the defect results in a late block to erythroid differentiation.

2017 ◽  
Vol 17 (5) ◽  
pp. 712-718 ◽  
Author(s):  
Cristiene Costa Carneiro ◽  
Aroldo Vieira de Moraes-Filho ◽  
Amanda Silva Fernandes ◽  
Suzana da Costa Santos ◽  
Daniela de Melo e Silva ◽  
...  
Keyword(s):  

2020 ◽  
Vol 6 (4) ◽  
pp. 287
Author(s):  
Daniela Costa ◽  
Rui M. Tavares ◽  
Paula Baptista ◽  
Teresa Lino-Neto

An increase in cork oak diseases caused by Biscogniauxia mediterranea and Diplodia corticola has been reported in the last decade. Due to the high socio-economic and ecologic importance of this plant species in the Mediterranean Basin, the search for preventive or treatment measures to control these diseases is an urgent need. Fungal endophytes were recovered from cork oak trees with different disease severity levels, using culture-dependent methods. The results showed a higher number of potential pathogens than beneficial fungi such as cork oak endophytes, even in healthy plants. The antagonist potential of a selection of eight cork oak fungal endophytes was tested against B. mediterranea and D. corticola by dual-plate assays. The tested endophytes were more efficient in inhibiting D. corticola than B. mediterranea growth, but Simplicillium aogashimaense, Fimetariella rabenhorstii, Chaetomium sp. and Alternaria alternata revealed a high potential to inhibit the growth of both. Simplicillium aogashimaense caused macroscopic and microscopic mycelial/hyphal deformations and presented promising results in controlling both phytopathogens’ growth in vitro. The evaluation of the antagonistic potential of non-volatile and volatile compounds also revealed that A. alternata compounds could be further explored for inhibiting both pathogens. These findings provide valuable knowledge that can be further explored in in vivo assays to find a suitable biocontrol agent for these cork oak diseases.


2019 ◽  
Vol 116 (50) ◽  
pp. 25322-25328 ◽  
Author(s):  
Yi Liu ◽  
Xiaopin Ma ◽  
Hisashi Fujioka ◽  
Jun Liu ◽  
Shengdi Chen ◽  
...  

Loss-of-function mutations in DJ-1 are associated with autosomal recessive early onset Parkinson’s disease (PD), yet the underlying pathogenic mechanism remains elusive. Here we demonstrate that DJ-1 localized to the mitochondria-associated membrane (MAM) both in vitro and in vivo. In fact, DJ-1 physically interacts with and is an essential component of the IP3R3-Grp75-VDAC1 complexes at MAM. Loss of DJ-1 disrupted the IP3R3-Grp75-VDAC1 complex and led to reduced endoplasmic reticulum (ER)-mitochondria association and disturbed function of MAM and mitochondria in vitro. These deficits could be rescued by wild-type DJ-1 but not by the familial PD-associated L166P mutant which had demonstrated reduced interaction with IP3R3-Grp75. Furthermore, DJ-1 ablation disturbed calcium efflux-induced IP3R3 degradation after carbachol treatment and caused IP3R3 accumulation at the MAM in vitro. Importantly, similar deficits in IP3R3-Grp75-VDAC1 complexes and MAM were found in the brain of DJ-1 knockout mice in vivo. The DJ-1 level was reduced in the substantia nigra of sporadic PD patients, which was associated with reduced IP3R3-DJ-1 interaction and ER-mitochondria association. Together, these findings offer insights into the cellular mechanism in the involvement of DJ-1 in the regulation of the integrity and calcium cross-talk between ER and mitochondria and suggests that impaired ER-mitochondria association could contribute to the pathogenesis of PD.


Author(s):  
You Dong Liu ◽  
Xiao Peng Zhuang ◽  
Dong Lan Cai ◽  
Can Cao ◽  
Qi Sheng Gu ◽  
...  

Abstract Background MicroRNAs (miRNAs) are abundant in tumor-derived extracellular vesicles (EVs) and the functions of extracellular miRNA to recipient cells have been extensively studied with tumorigenesis. However, the role of miRNA in EV secretion from cancer cells remains unknown. Methods qPCR and bioinformatics analysis were applied for determining extracellular let-7a expression from CRC patient serum and cells. Nanosight particle tracking analysis was performed for investigating the effect of let-7a on EV secretion. Luciferase reporter assays was used for identifying targeted genes synaptosome-associated protein 23 (SNAP23). In vitro and in vivo assays were used for exploring the function of let-7a/SNAP23 axis in CRC progression. Bioenergetic assays were performed for investigating the role of let-7a/SNAP23 in cellular metabolic reprogramming. Results let-7a miRNA was elevated in serum EVs from CRC patients and was enriched in CRC cell-derived EVs. We determined that let-7a could suppress EV secretion directly targeting SNAP23. In turn, SNAP23 promotes EV secretion of let-7a to downregulate the intracellular let-7a expression. In addition, we found a novel mechanism of let-7a/SNAP23 axis by regulating mitochondrial oxidative phosphorylation (OXPHOS) through Lin28a/SDHA signaling pathway. Conclusions Let-7a plays an essential role in not only inhibiting EV secretion, but also suppressing OXPHOS through SNAP23, resulting in the suppression of CRC progression, suggesting that let-7a/SNAP23 axis could provide not only effective tumor biomarkers but also novel targets for tumor therapeutic strategies.


2017 ◽  
Vol 68 ◽  
pp. 83-90 ◽  
Author(s):  
Gabriel Vinderola ◽  
Miguel Gueimonde ◽  
Carlos Gomez-Gallego ◽  
Lucrecia Delfederico ◽  
Seppo Salminen
Keyword(s):  

2002 ◽  
Vol 97 (2) ◽  
pp. 269-272 ◽  
Author(s):  
Susana Muelas ◽  
Margarita Suárez ◽  
Rolando Pérez ◽  
Hortensia Rodríguez ◽  
Carmen Ochoa ◽  
...  

Blood ◽  
1984 ◽  
Vol 63 (6) ◽  
pp. 1376-1384 ◽  
Author(s):  
T Yokochi ◽  
M Brice ◽  
PS Rabinovitch ◽  
T Papayannopoulou ◽  
G Stamatoyannopoulos

Two new cell surface antigens specific for the erythroid lineage were defined with cytotoxic IgM monoclonal antibodies (McAb) (EP-1; EP-2) that were produced using BFU-E-derived colonies as immunogens. These two antigens are expressed on in vivo and in vitro derived adult and fetal erythroblasts, but not on erythrocytes. They are not detectable on resting lymphocytes, concanavalin-A (Con-A) activated lymphoblasts, granulocytes, and monocytes or granulocytic cells or macrophages present in peripheral blood or harvested from CFU-GM cultures. Cell line and tissue distributions distinguish McAb EP-1 and EP-2 from all previously described monoclonal antibodies. McAb EP-1 (for erythropoietic antigen-1) inhibits the formation of BFU-E and CFU-E, but not CFU-GM, colonies in complement-dependent cytotoxicity assays. By cell sorting analysis, about 90% of erythroid progenitors (CFU-E, BFU-E) were recovered in the antigen-positive fraction. Seven percent of the cells in this fraction were progenitors (versus 0.1% in the negative fraction). The expression of EP-1 antigen is greatly enhanced in K562 cells, using inducers of hemoglobin synthesis. McAb EP-2 fails to inhibit BFU-E and CFU-E colony formation in complement-dependent cytotoxicity assays. EP-2 antigen is predominantly expressed on in vitro derived immature erythroblasts, and it is weakly expressed on mature erythroblasts. The findings with McAb EP-1 provide evidence that erythroid progenitors (BFU-E and CFU-E) express determinants that fail to be expressed on other progenitor cells and hence appear to be unique to the erythroid lineage. McAb EP-1 and EP-2 are potentially useful for studies of erythroid differentiation and progenitor cell isolation.


2018 ◽  
Author(s):  
Maayan Barnea ◽  
Merle Stein ◽  
Sabina Winograd-Katz ◽  
Moran Shalev ◽  
Esther Arman ◽  
...  

SummaryThe molecular mechanisms that regulate fusion of monocytes into functional osteoclasts are virtually unknown. We describe a knock-in mouse model for the R51Q mutation in sorting nexin 10 (SNX10) that exhibits osteopetrosis and related symptoms of patients of autosomal recessive osteopetrosis linked to this mutation. Osteopetrosis arises in homozygous R51Q SNX10 mice due to a unique combination of reduced numbers of osteoclasts that are non-functional. Fusion of mutant monocytes is deregulated and occurs rapidly and continuously to form giant, non-functional osteoclasts. Mutant osteoclasts mature quickly and survive poorly in vitro, possibly accounting for their scarcity in vivo. These cells also exhibit impaired ruffled borders, which are required for bone resorption, providing an additional basis for the osteopetrotic phenotype. More broadly, we propose that the maximal size of osteoclasts is actively determined by a genetically-regulated, cell-autonomous mechanism that limits precursor cell fusion, and for which SNX10 is required.


Sign in / Sign up

Export Citation Format

Share Document