scholarly journals R51Q SNX10 induces osteopetrosis by promoting uncontrolled fusion of monocytes to form giant, non-functional osteoclasts

2018 ◽  
Author(s):  
Maayan Barnea ◽  
Merle Stein ◽  
Sabina Winograd-Katz ◽  
Moran Shalev ◽  
Esther Arman ◽  
...  

SummaryThe molecular mechanisms that regulate fusion of monocytes into functional osteoclasts are virtually unknown. We describe a knock-in mouse model for the R51Q mutation in sorting nexin 10 (SNX10) that exhibits osteopetrosis and related symptoms of patients of autosomal recessive osteopetrosis linked to this mutation. Osteopetrosis arises in homozygous R51Q SNX10 mice due to a unique combination of reduced numbers of osteoclasts that are non-functional. Fusion of mutant monocytes is deregulated and occurs rapidly and continuously to form giant, non-functional osteoclasts. Mutant osteoclasts mature quickly and survive poorly in vitro, possibly accounting for their scarcity in vivo. These cells also exhibit impaired ruffled borders, which are required for bone resorption, providing an additional basis for the osteopetrotic phenotype. More broadly, we propose that the maximal size of osteoclasts is actively determined by a genetically-regulated, cell-autonomous mechanism that limits precursor cell fusion, and for which SNX10 is required.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ming-Xuan Feng ◽  
Jian-Xin Hong ◽  
Qiang Wang ◽  
Yong-Yong Fan ◽  
Chi-Ting Yuan ◽  
...  

Abstract Bone is the most common site of distant relapse in breast cancer, leading to severe complications which dramatically affect the patients’ quality of life. It is believed that the crosstalk between metastatic breast cancer cells and osteoclasts is critical for breast cancer-induced osteolysis. In this study, the effects of dihydroartemisinin (DHA) on osteoclast formation, bone resorption, osteoblast differentiation and mineralization were initially assessed in vitro, followed by further investigation in a titanium-particle-induced osteolysis model in vivo. Based on the proved inhibitory effect of DHA on osteolysis, DHA was further applied to MDA-MB-231 breast cancer-induced mouse osteolysis model, with the underlying molecular mechanisms further investigated. Here, we verified for the first time that DHA suppressed osteoclast differentiation, F-actin ring formation and bone resorption through suppressing AKT/SRC pathways, leading to the preventive effect of DHA on titanium-particle-induced osteolysis without affecting osteoblast function. More importantly, we demonstrated that DHA inhibited breast tumor-induced osteolysis through inhibiting the proliferation, migration and invasion of MDA-MB-231 cells via modulating AKT signaling pathway. In conclusion, DHA effectively inhibited osteoclastogenesis and prevented breast cancer-induced osteolysis.


2020 ◽  
Author(s):  
Han Seok Koh ◽  
Hannah Jang ◽  
SooKil Tae ◽  
mi-sun Lee ◽  
Jae-Woong Min ◽  
...  

Abstract Background Alzheimer`s disease (AD) is a progressive neurodegenerative disease worldwide. Accumulation of amyloid-β (Aβ), neurofibrillary tangles and neuroinflammation play the important neuro-pathology in patients with AD. miRNA is multifunctional and involved in physiological and pathological processes. Recently, microRNAs have been linked to neurodegenerative diseases. However, it is little known whether miRNA dysregulation contributes to AD pathology progression such as Aβ processing, phagocytosis and neuroinflammation. Here, we identify miR485-3p as a novel modulator of AD pathology in 5XFAD mice. Methods To study the role of miR485-3p in AD, we used in control or miR485-3p antisense oligonucleotides (miR485-3p ASO) injected 5XFAD mouse model. Changes of Aβ processing and clearance and inflammation were analyzed by biochemical method in vitro and in vivo. Result This study suggests that miR485-3p, a novel miRNA targeting SIRT1 may contribute to pathogenesis in an AD mouse. We found SIRT1 is significantly reduced in the precentral gyrus of Alzheimer patient`s and in 5XFAD mice. To determine whether the inhibition of miRNA 485-3p would affect AD pathology, we studied the effect of the antisense oligo in the brain of 5XFAD mice through direct intracerebral ventricular injection with miR485-3p ASO. We demonstrated that miR485-3p ASO significantly reduced Aβ plaque and amyloid biosynthetic enzyme. Importantly, the attenuation of Aβ plaques through miR485-3p ASO was mediated through Aβ phagocytic activity of glial cells, by which it can directly target CD36. MiR485-3p ASO also decreased inflammatory responses. Collectively, these responses inhibited neuronal loss caused by Aβ lead to improvements of cognitive impairment. Conclusion Our data provide evidence for the molecular mechanisms which underlie the miR485-3p ASO responses in an AD mouse model. These results suggest that attenuating miRNA 485-3p levels might represent a novel therapeutic approach in AD.


2021 ◽  
Author(s):  
zhaotao wang ◽  
yongping Li ◽  
minyi liu ◽  
danmin chen ◽  
yunxiang ji ◽  
...  

Abstract BackgroundGlioblastoma (GBM) is a tumor of the central nervous system carries an extremely poor prognosis. Unfortunately, it also is the most frequently encountered tumor in this region. These tumors arise from glioblastoma stem cells (GSCs), which are glioma cells that are known to possess high degrees of stemness. GBM invades through the process of EMT, which features loss of cell differentiation and polarity. Survivin is a type of apoptotic inhibitor that has been characterized in several malignancies such as glioma. Normal tissues rarely express survivin. On the other hand, 3-benzyl-5-((2-nitrophenoxy) methyl) dihydrofuran-2(3H)-one (3BDO) represents an autophagy inhibitor and activates the mTOR pathway. It has been reported that 3BDO shows anti-cancer activities in lung carcinoma. However, the effects of 3BDO on GBM reminds unknown. Therefore, the purpose of this study was to explore the role and molecular mechanisms that 3BDO mediates in GBM.MethodCCK-8 experiments and clone formation assay were performed to detect the cell proliferation. Transwell assay was conducted to examined cell migration and invasion. Western blotting and immunofluorescence staining was used to analyze protein expression levels. Xenograft mouse model was used to evaluate the effect of 3BDO in vivo.ResultsWe found that 3BDO inhibited U87 and U251 cell proliferation in a dose-dependent manner. Additonally, 3BDO decreased the sphere formation and stemness markers (sox2, nestin and CD133) in GSCs. 3BDO also inhibited migration, invasion and suppressed EMT markers (N-cadherin, vimentin and snail) in GBM cells. Moreover, we found that 3BDO downregulated survivin expression of survivin both in GBM cells (U87, U251) and GSCs. Furthermore, overexpression of survivin reduced the therapeutic effects of 3BDO on GBM cell EMT, invasion, migration and proliferation, as well as decreased stemness in GSCs. Finally, we demonstrated that 3BDO inhibited tumor growth in a tumor xenograft mouse model constructed using U87 cells. Similar to the in vitro findings, 3BDO diminished suvivin expression, stemness and levels of EMT makers in vivo.Conclusionsour results demonstrated that 3BDO repressed GBM via downregulating survivin-mediated stemness and EMT both in vitro and in vivo.


Diabetologia ◽  
2021 ◽  
Author(s):  
Maude Giroud ◽  
Foivos-Filippos Tsokanos ◽  
Giorgio Caratti ◽  
Stefan Kotschi ◽  
Sajjad Khani ◽  
...  

Abstract Aims/hypothesis Adipocytes are critical cornerstones of energy metabolism. While obesity-induced adipocyte dysfunction is associated with insulin resistance and systemic metabolic disturbances, adipogenesis, the formation of new adipocytes and healthy adipose tissue expansion are associated with metabolic benefits. Understanding the molecular mechanisms governing adipogenesis is of great clinical potential to efficiently restore metabolic health in obesity. Here we investigate the role of heart and neural crest derivatives-expressed 2 (HAND2) in adipogenesis. Methods Human white adipose tissue (WAT) was collected from two cross-sectional studies of 318 and 96 individuals. In vitro, for mechanistic experiments we used primary adipocytes from humans and mice as well as human multipotent adipose-derived stem (hMADS) cells. Gene silencing was performed using siRNA or genetic inactivation in primary adipocytes from loxP and or tamoxifen-inducible Cre-ERT2 mouse models with Cre-encoding mRNA or tamoxifen, respectively. Adipogenesis and adipocyte metabolism were measured by Oil Red O staining, quantitative PCR (qPCR), microarray, glucose uptake assay, western blot and lipolysis assay. A combinatorial RNA sequencing (RNAseq) and ChIP qPCR approach was used to identify target genes regulated by HAND2. In vivo, we created a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter (Hand2AdipoqCre) and performed a large panel of metabolic tests. Results We found that HAND2 is an obesity-linked white adipocyte transcription factor regulated by glucocorticoids that was necessary but insufficient for adipocyte differentiation in vitro. In a large cohort of humans, WAT HAND2 expression was correlated to BMI. The HAND2 gene was enriched in white adipocytes compared with brown, induced early in differentiation and responded to dexamethasone (DEX), a typical glucocorticoid receptor (GR, encoded by NR3C1) agonist. Silencing of NR3C1 in hMADS cells or deletion of GR in a transgenic conditional mouse model results in diminished HAND2 expression, establishing that adipocyte HAND2 is regulated by glucocorticoids via GR in vitro and in vivo. Furthermore, we identified gene clusters indirectly regulated by the GR–HAND2 pathway. Interestingly, silencing of HAND2 impaired adipocyte differentiation in hMADS and primary mouse adipocytes. However, a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter did not mirror these effects on adipose tissue differentiation, indicating that HAND2 was required at stages prior to Adipoq expression. Conclusions/interpretation In summary, our study identifies HAND2 as a novel obesity-linked adipocyte transcription factor, highlighting new mechanisms of GR-dependent adipogenesis in humans and mice. Data availability Array data have been submitted to the GEO database at NCBI (GSE148699). Graphical abstract


2020 ◽  
Author(s):  
Han Seok Koh ◽  
Hannah Jang ◽  
Sookil Tae ◽  
mi-sun Lee ◽  
Jae-Woong Min ◽  
...  

Abstract Background Alzheimer`s disease (AD) is a progressive neurodegenerative disease worldwide. Accumulation of amyloid-β (Aβ), neurofibrillary tangles and neuroinflammation play the important neuro-pathology in patients with AD. miRNA is multifunctional and involved in physiological and pathological processes. Recently, microRNAs have been linked to neurodegenerative diseases. However, it is little known whether miRNA dysregulation contributes to AD pathology progression such as Ab processing, phagocytosis and neuroinflammation. Here, we identify miR485-3p as a novel modulator of AD pathology in 5XFAD mice. Methods To study the role of miR485-3p in AD, we used in control or miR485-3p antisense oligonucleotides (miR485-3p ASO) injected 5XFAD mouse model. Changes of Ab processing, clearance and inflammation were analyzed by biochemical method in vitro and in vivo. Results This study suggests that miR485-3p, a novel miRNA targeting SIRT1 may contribute to pathogenesis in an AD mouse. We found SIRT1 is significantly reduced in the precentral gyrus of Alzheimer patient`s and in 5XFAD mice. To determine whether the inhibition of miRNA 485-3p would affect AD pathology, we studied the effect of the antisense oligo in the brain of 5XFAD mice through direct intracerebral ventricular injection with miR485-3p ASO. We demonstrated that miR485-3p ASO significantly reduced Aβ plaque and amyloid biosynthetic enzyme. Importantly, the attenuation of Aβ plaques through miR485-3p ASO was mediated through Aβ phagocytic activity of glial cells, by which it can directly target CD36. MiR485-3p ASO also decreased inflammatory responses. Collectively, these responses inhibited neuronal loss caused by Aβ lead to improvements of cognitive impairment. Conclusion Our data provide evidence for the molecular mechanisms which underlie the miR485-3p ASO responses in an AD mouse model. These results suggest that attenuating miRNA 485-3p levels might represent a novel therapeutic approach in AD.


2021 ◽  
Author(s):  
Bo Liu ◽  
Yuna Zhang

Abstract ObjectiveOsteoporosis is a prevalent metabolic skeletal disorder featured by microarchitecture bone injury and excessive osteoclastic activity.Here, we aimed to explore the effect of Spinosin on osteoclastogenesis of osteoporosis.DesignThe receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis model was established in bone marrow macrophages (BMMs) in vitro. The ovariectomy (OVX)-induced bone loss mouse model was constructed in vivo, followed by micro-CT analysis, Histomorphometric analysis, Hematoxylin and Eosin (H&E) and TRAP staining.ResultsOur data showed that the treatment of Spinosin significantly inhibited the TRAP positive osteoclast and bone resorption induced by RANKL in the BMMs. Spinosin significantly reduced the expression of osteoclast-specific factors, including osteoclast stimulatory transmembrane protein (OC-STAMP), dendritic cell-specific transmembrane protein (DC-STAMP), cathepsin K (CTSK), TRAP, c-Fos and nuclear factor of activated T cells cytoplasm 1 (NFATc1), in the RANKL-treated BMMs. Mechanically, Spinosin was able to inactivate NF-κB by stimulating Nrf2/HO-1 signaling in BMMs. The trabecular space (Tb.Sp), trabecular number (Tb.N), trabecular thickness (Tb.Th), and bone volume to total volume (BV/TV) were inhibited by OVX treatment, and Spinosin could reverse the effect in the bone resorption mouse model. The OVX-induced serum levels of tumor necrosis factor-α (TNF-α) and tartrate-resistant acid phosphatase 5 B (TRAcp5B) were blocked by Spinosin in the mice. Moreover, Spinosin was able to alleviate OVX-induced loss of femur bone and osteoclasts in vivo.ConclusionsIn conclusion, Spinosin attenuates osteoclastogenesis of osteoporosis through inhibiting NF-κB by activating Nrf2/HO-1 expression. Spinosin may serve as the potential candidate for the treatment of osteoporosis.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3241-3241
Author(s):  
Matthew J Carter ◽  
Kerry L Cox ◽  
Stuart J Blakemore ◽  
Anna H Turaj ◽  
Robert J Oldham ◽  
...  

Abstract Introduction: Phosphatidylinositol-3-kinase δ (PI3Kδ)-signaling provides key maintenance, proliferation, and survival cues during both normal and malignant B-lymphocyte development. Consequently, isoform-selective PI3Kδ inhibitors (PI3Kδi) have generated huge interest as a potential treatment for lymphoid malignancies. In particular, PI3Kδi demonstrate impressive clinical efficacy in combination with anti-CD20 monoclonal antibodies (mAbs) for relapsed chronic lymphocytic leukemia (CLL). However, these combinations function primarily to delay disease progression, but are not curative. With the ever-rising number of new targeted therapeutics, the challenge is to identify combinations that will ultimately deliver curative regimes. In order to guide these selections, a detailed mechanistic understanding is required. To date, only limited data are available regarding the exact in vivo therapeutic mechanism of PI3Kδi. Currently, studies identify immunomodulation, inhibition of BCR-, chemokine/cytokine-signaling, and induction of apoptosis as putative therapeutic mechanisms. Here we characterize the molecular mechanisms responsible for PI3Kδi-induced cytotoxicity and determine the relative contribution toward in vivo therapeutic responses utilizing the Eµ-TCL1-Tg mouse model of CLL alongside human CLL samples. Methods: The molecular mechanisms of PI3Kδi alone or in combination with anti-CD20 mAbs were assessed using the Eµ-TCL1-Tg mouse model, an in vivo model system of CLL. To inhibit PI3Kδ, the δ isoform-selective inhibitor GS-9820 was chosen, as it is highly structurally related to idelalisib, and critically demonstrates improved pharmacokinetic properties in the mouse in comparison to idelalisib. In vitro GS-9820 IC50 are as follows: PI3Kδ 27 nM; PI3Kα 83,424 nM; PI3Kβ 14,899 nM; and PI3Kγ 15,606 nM. Assays to measure its effects on BCR-mediated kinase activation, chemokine signaling/chemotaxis, and cytokine- and cell-mediated support were performed. GS-9820 was administered in vivo at 10 mg/kg per os BID (formulated in 0.5% methylcellulose, 0.05% tween-80), once leukemias were detected, and maintained throughout the treatment period (GS-9820 Cmax 3114 nM, Ctrough 48.6 nM). Results: GS-9820 induced substantive in vitro cell death and disruptedBCR-mediated kinase activation, chemokine signaling/chemotaxis, and inhibited both cytokine- and cell-mediated support in murine (Eµ-TCL1) and human CLL cells. In vivo administration of GS-9820 imparted significant therapeutic responses in Eµ-TCL1-bearing animals, reducing leukemic burden by 75% and splenic tumor deposits by 66% 4 weeks posttreatment. GS-9820 appeared well tolerated in recipient animals with no obvious toxicity apparent (e.g. weight loss or behavioral symptoms). When in combination with anti-CD20 mAbs, GS-9820 extended leukemia depletion by several weeks. GS-9820 enhanced overall survival by 66% in comparison with vehicle control-recipient animals and enhanced the survival benefit of anti-CD20 mAb therapy. These therapeutic responses were associated with a 2-fold increase in expression of the pro-apoptotic BH3-only Bcl-2 family member Bim and a 3-fold increase in the extent of Bim/Bcl-2 interaction. Accordingly, Bim-/- Eµ-TCL1-Tg leukaemias exhibited profound resistance to PI3Kδi-induced cytotoxicity, were refractory to PI3Kδi in vivo, and failed to display combination efficacy with anti-CD20 mAbs. These findings informed the rational design of a GS-9820 + ABT199 (Venetoclax) complementary drug combination strategy. Combinations of GS-9820 and ABT199 were well tolerated with an absence of weight loss or altered behavioral symptoms. The GS-9820 + ABT199 combination effectively halted leukemia progression in vivo with increased efficacy compared to monotherapy regimes, resulting in a 90% reduction in leukemic burden at the end of the treatment period. Conclusions: Bim-dependent apoptosis represents the key in vivo effector mechanism for PI3Kδi in the Eµ-TCL1-Tg mouse model, both alone and in combination with anti-CD20 mAbs. As such, combinations of PI3Kδ and Bcl-2 inhibitors may represent an efficacious drug combination strategy. Disclosures Tannheimer: Gilead Sciences: Employment. Packham:Karus Therapeutics: Other: Share Holder & Founder; Aquinox Pharmaceuticals: Research Funding. Cragg:Baxalta: Consultancy; Roche: Consultancy, Research Funding; Bioinvent International: Consultancy, Research Funding; Gilead Sciences: Research Funding; GSK: Research Funding.


2020 ◽  
Author(s):  
Maude Giroud ◽  
Foivos-Filippos Tsokanos ◽  
Giorgio Caratti ◽  
Sajjad Khani ◽  
Elena Sophie Vogl ◽  
...  

AbstractAdipocytes are critical cornerstones of energy metabolism. While obesity-induced adipocyte dysfunction is associated with insulin resistance and systemic metabolic disturbances, adipogenesis, the formation of new adipocytes and healthy adipose tissue expansion are associated with metabolic benefits. Understanding the molecular mechanisms governing adipogenesis is of great clinical potential to efficiently restore metabolic health in obesity. Here we show that Heart- and neural crest derivatives-expressed protein 2 (HAND2) is an obesity-linked adipocyte transcription factor regulated by glucocorticoids and required for adipocyte differentiation in vitro. In a large cohort of humans with obesity, white adipose tissue (WAT) HAND2 expression was correlated to body-mass-index (BMI). The HAND2 gene was enriched in white adipocytes, induced early in differentiation and responded to dexamethasone, a typical glucocorticoid receptor (GR, encoded by NR3C1) agonist. Silencing of NR3C1 in human multipotent adipose-derived stem cells (hMADS) or deletion of GR in a transgenic conditional mouse model results in diminished HAND2 expression, establishing that adipocyte HAND2 is regulated by glucocorticoids via GR in vitro and in vivo. Using a combinatorial RNAseq approach we identified gene clusters regulated by the GR-HAND2 pathway. Interestingly, silencing of HAND2 impaired adipocyte differentiation in hMADS and primary mouse adipocytes. However, a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter did not mirror these effects on adipose tissue differentiation, indicating that Hand2 was required at stages prior to Adipoq expression. In summary, our study identifies HAND2 as a novel obesity-linked adipocyte transcription factor, highlighting new mechanisms of GR-dependent adipogenesis in human and mice.


2019 ◽  
Vol 26 (25) ◽  
pp. 4799-4831 ◽  
Author(s):  
Jiahua Cui ◽  
Xiaoyang Liu ◽  
Larry M.C. Chow

P-glycoprotein, also known as ABCB1 in the ABC transporter family, confers the simultaneous resistance of metastatic cancer cells towards various anticancer drugs with different targets and diverse chemical structures. The exploration of safe and specific inhibitors of this pump has always been the pursuit of scientists for the past four decades. Naturally occurring flavonoids as benzopyrone derivatives were recognized as a class of nontoxic inhibitors of P-gp. The recent advent of synthetic flavonoid dimer FD18, as a potent P-gp modulator in reversing multidrug resistance both in vitro and in vivo, specifically targeted the pseudodimeric structure of the drug transporter and represented a new generation of inhibitors with high transporter binding affinity and low toxicity. This review concerned the recent updates on the structure-activity relationships of flavonoids as P-gp inhibitors, the molecular mechanisms of their action and their ability to overcome P-gp-mediated MDR in preclinical studies. It had crucial implications on the discovery of new drug candidates that modulated the efflux of ABC transporters and also provided some clues for the future development in this promising area.


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


Sign in / Sign up

Export Citation Format

Share Document