The Structure and Function of Murine Factor V and Its Inactivation by Protein C

Blood ◽  
1998 ◽  
Vol 91 (12) ◽  
pp. 4593-4599 ◽  
Author(s):  
Tony L. Yang ◽  
Jisong Cui ◽  
Alnawaz Rehumtulla ◽  
Angela Yang ◽  
Micheline Moussalli ◽  
...  

Factor V (FV) is a central regulator of hemostasis, serving both as a critical cofactor for the prothrombinase activity of factor Xa and the target for proteolytic inactivation by the anticoagulant, activated protein C (APC). To examine the evolutionary conservation of FV procoagulant activity and functional inactivation by APC, we cloned and sequenced the coding region of murine FV cDNA and generated recombinant wild-type and mutant murine FV proteins. The murine FV cDNA encodes a 2,183-amino acid protein. Sequence comparison shows that the A1-A3 and C1-C2 domains of FV are highly conserved, demonstrating greater than 84% sequence identity between murine and human, and 60% overall amino acid identity among human, bovine, and murine FV sequences. In contrast, only 35% identity among all three species is observed for the poorly conserved B domain. The arginines at all thrombin cleavage sites and the R305 and R504 APC cleavage sites (corresponding to amino acid residues R306 and R506 in human FV) are invariant in all three species. Point mutants were generated to substitute glutamine at R305, R504, or both (R305/R504). Wild-type and all three mutant FV recombinant proteins show equivalent FV procoagulant activity. Single mutations at R305 or R504 result in partial resistance of FV to APC inactivation, whereas recombinant murine FV carrying both mutations (R305Q/R504Q) is nearly completely APC resistant. Thus, the structure and function of FV and its interaction with APC are highly conserved across mammalian species.

Blood ◽  
1998 ◽  
Vol 91 (12) ◽  
pp. 4593-4599 ◽  
Author(s):  
Tony L. Yang ◽  
Jisong Cui ◽  
Alnawaz Rehumtulla ◽  
Angela Yang ◽  
Micheline Moussalli ◽  
...  

Abstract Factor V (FV) is a central regulator of hemostasis, serving both as a critical cofactor for the prothrombinase activity of factor Xa and the target for proteolytic inactivation by the anticoagulant, activated protein C (APC). To examine the evolutionary conservation of FV procoagulant activity and functional inactivation by APC, we cloned and sequenced the coding region of murine FV cDNA and generated recombinant wild-type and mutant murine FV proteins. The murine FV cDNA encodes a 2,183-amino acid protein. Sequence comparison shows that the A1-A3 and C1-C2 domains of FV are highly conserved, demonstrating greater than 84% sequence identity between murine and human, and 60% overall amino acid identity among human, bovine, and murine FV sequences. In contrast, only 35% identity among all three species is observed for the poorly conserved B domain. The arginines at all thrombin cleavage sites and the R305 and R504 APC cleavage sites (corresponding to amino acid residues R306 and R506 in human FV) are invariant in all three species. Point mutants were generated to substitute glutamine at R305, R504, or both (R305/R504). Wild-type and all three mutant FV recombinant proteins show equivalent FV procoagulant activity. Single mutations at R305 or R504 result in partial resistance of FV to APC inactivation, whereas recombinant murine FV carrying both mutations (R305Q/R504Q) is nearly completely APC resistant. Thus, the structure and function of FV and its interaction with APC are highly conserved across mammalian species.


1996 ◽  
Vol 135 (3) ◽  
pp. 673-687 ◽  
Author(s):  
A J Kreuz ◽  
A Simcox ◽  
D Maughan

Drosophila indirect flight muscle (IFM) contains two different types of tropomyosin: a standard 284-amino acid muscle tropomyosin, Ifm-TmI, encoded by the TmI gene, and two > 400 amino acid tropomyosins, TnH-33 and TnH-34, encoded by TmII. The two IFM-specific TnH isoforms are unique tropomyosins with a COOH-terminal extension of approximately 200 residues which is hydrophobic and rich in prolines. Previous analysis of a hypomorphic TmI mutant, Ifm(3)3, demonstrated that Ifm-TmI is necessary for proper myofibrillar assembly, but no null TmI mutant or TmII mutant which affects the TnH isoforms have been reported. In the current report, we show that four flightless mutants (Warmke et al., 1989) are alleles of TmI, and characterize a deficiency which deletes both TmI and TmII. We find that haploidy of TmI causes myofibrillar disruptions and flightless behavior, but that haploidy of TmII causes neither. Single fiber mechanics demonstrates that power output is much lower in the TmI haploid line (32% of wild-type) than in the TmII haploid line (73% of wild-type). In myofibers nearly depleted of Ifm-TmI, net power output is virtually abolished (< 1% of wild-type) despite the presence of an organized fibrillar core (approximately 20% of wild-type). The results suggest Ifm-TmI (the standard tropomyosin) plays a key role in fiber structure, power production, and flight, with reduced Ifm-TmI expression producing corresponding changes of IFM structure and function. In contrast, reduced expression of the TnH isoforms has an unexpectedly mild effect on IFM structure and function.


Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4214-4225 ◽  
Author(s):  
DD Pittman ◽  
KA Marquette ◽  
RJ Kaufman

Factor V and factor VIII are homologous cofactors in the blood coagulation cascade that have the domain structure A1-A2-B-A3-C1-C2, of which the B domain has extensively diverged. In transfected COS-1 monkey cells, expression of factor VIII is approximately 10-fold less efficient than that of factor V, primarily because of inefficient protein secretion and, to a lesser extent, reduced mRNA expression. To study the functional significance and effect of the B domain on expression and activity, chimeric cDNAs were constructed in which the B domains of factor V and factor VIII were exchanged. Expression of a factor VIII chimera harboring the B-domain of factor V yielded a fully functional factor VIII molecule that was expressed twofold more efficiently than wild-type factor VIII because of increased mRNA expression. Thus, sequences within the factor VIII B domain were not responsible for the inefficient secretion of factor VIII compared with factor V. Expression of a factor V chimera harboring the B domain of factor VIII was slightly reduced compared with wild-type factor V, although the secreted molecule had significantly reduced procoagulant activity correlating with dissociated heavy and light chains and resistance to thrombin activation. Interestingly, the factor V chimera containing the factor VIII B domain was efficiently activated by Russell's viper venum (RVV). A factor V B domain deletion (residues 710- 1545) molecule also exhibited significantly reduced procoagulant activity caused by resistance to thrombin cleavage and activation, although this molecule was activatable by RVV. These results show that, in contrast to factor VIII, thrombin activation of factor V requires sequences within the B domain. In addition, thrombin activation of factor V occurs through a different mechanism than activation by RVV.


1989 ◽  
Vol 44 (5-6) ◽  
pp. 431-434 ◽  
Author(s):  
Günter F. Wildner ◽  
Ursula Heisterkamp ◽  
Ulrich Bodner ◽  
Udo Johanmngmeier ◽  
Wolfgang Haehnel

Abstract Structure and function of the QB-protein of a metribuzin resistant mutant of Chlamydomonas reinhardii were analyzed. The amino acid residue Leu-275 of the wild type protein is changed to Phe as was determined by RNA -sequence analysis. This mutation caused a 20-fold and 5-fold resistance to metribuzin and DCMU , respectively. No resistance to atrazine was observed. The kinetics of the electron transport from QA to OB was similar to that of the wild type (t1/2 = 0.4 ms).


1997 ◽  
Vol 75 (6) ◽  
pp. 687-696 ◽  
Author(s):  
Tamo Fukamizo ◽  
Ryszard Brzezinski

Novel information on the structure and function of chitosanase, which hydrolyzes the beta -1,4-glycosidic linkage of chitosan, has accumulated in recent years. The cloning of the chitosanase gene from Streptomyces sp. strain N174 and the establishment of an efficient expression system using Streptomyces lividans TK24 have contributed to these advances. Amino acid sequence comparisons of the chitosanases that have been sequenced to date revealed a significant homology in the N-terminal module. From energy minimization based on the X-ray crystal structure of Streptomyces sp. strain N174 chitosanase, the substrate binding cleft of this enzyme was estimated to be composed of six monosaccharide binding subsites. The hydrolytic reaction takes place at the center of the binding cleft with an inverting mechanism. Site-directed mutagenesis of the carboxylic amino acid residues that are conserved revealed that Glu-22 and Asp-40 are the catalytic residues. The tryptophan residues in the chitosanase do not participate directly in the substrate binding but stabilize the protein structure by interacting with hydrophobic and carboxylic side chains of the other amino acid residues. Structural and functional similarities were found between chitosanase, barley chitinase, bacteriophage T4 lysozyme, and goose egg white lysozyme, even though these proteins share no sequence similarities. This information can be helpful for the design of new chitinolytic enzymes that can be applied to carbohydrate engineering, biological control of phytopathogens, and other fields including chitinous polysaccharide degradation. Key words: chitosanase, amino acid sequence, overexpression system, reaction mechanism, site-directed mutagenesis.


2019 ◽  
Vol 116 (37) ◽  
pp. 18445-18454 ◽  
Author(s):  
Alan K. Itakura ◽  
Kher Xing Chan ◽  
Nicky Atkinson ◽  
Leif Pallesen ◽  
Lianyong Wang ◽  
...  

A phase-separated, liquid-like organelle called the pyrenoid mediates CO2fixation in the chloroplasts of nearly all eukaryotic algae. While most algae have 1 pyrenoid per chloroplast, here we describe a mutant in the model algaChlamydomonasthat has on average 10 pyrenoids per chloroplast. Characterization of the mutant leads us to propose a model where multiple pyrenoids are favored by an increase in the surface area of the starch sheath that surrounds and binds to the liquid-like pyrenoid matrix. We find that the mutant’s phenotypes are due to disruption of a gene, which we call StArch Granules Abnormal 1 (SAGA1) because starch sheath granules, or plates, in mutants lacking SAGA1 are more elongated and thinner than those of wild type. SAGA1 contains a starch binding motif, suggesting that it may directly regulate starch sheath morphology. SAGA1 localizes to multiple puncta and streaks in the pyrenoid and physically interacts with the small and large subunits of the carbon-fixing enzyme Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), a major component of the liquid-like pyrenoid matrix. Our findings suggest a biophysical mechanism by which starch sheath morphology affects pyrenoid number and CO2-concentrating mechanism function, advancing our understanding of the structure and function of this biogeochemically important organelle. More broadly, we propose that the number of phase-separated organelles can be regulated by imposing constraints on their surface area.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
J. Santiago Mejia ◽  
Erik N. Arthun ◽  
Richard G. Titus

One approach to identify epitopes that could be used in the design of vaccines to control several arthropod-borne diseases simultaneously is to look for common structural features in the secretome of the pathogens that cause them. Using a novel bioinformatics technique, cysteine-abundance and distribution analysis, we found that many different proteins secreted by several arthropod-borne pathogens, includingPlasmodium falciparum, Borrelia burgdorferi, and eight species of Proteobacteria, are devoid of cysteine residues. The identification of three cysteine-abundance and distribution patterns in several families of proteins secreted by pathogenic and nonpathogenic Proteobacteria, and not found when the amino acid analyzed was tryptophan, provides evidence of forces restricting the content of cysteine residues in microbial proteins during evolution. We discuss these findings in the context of protein structure and function, antigenicity and immunogenicity, and host-parasite relationships.


1995 ◽  
Vol 7 (4) ◽  
pp. 847 ◽  
Author(s):  
C Gagnon

With very few exceptions, the basic structure of the 9+2 axoneme has been well preserved over a very long period of evolution from protozoa to mammais. This stability indicates that the basic structural components of the axoneme visible by electron microscopy, as well as most of the other unidentified components, have withstood the passage of time. It also means that components of the 9+2 axoneme have sufficient diversity in function to accommodate the various types of motility patterns encountered in different species of flagella. Several of the 200 polypeptides that constitute the axoneme have been identified as components of the dynein arms, radial spokes etc. but many more remain to be identified and their function(s) remain to be determined. Because this review deals with the regulation of flagellar movement at the axonemal level, it does not include regulation of flagella by extracellular factors unless these factors have a direct action on axonemal components. In this context, it is very important firstly to understand the structural components of the axoneme and how they influence and regulate axonemal movement. Different primitive organisms are mentioned in this review since major breakthroughs in our understanding of how an axoneme generates different types of movement have been made through their study. Despite some variations in structure and function of axonemal components, the basic mechanisms involved in the regulation of flagella from Chlamydomonas or sea urchin spermatozoa should also apply to the more evolved mammalian species, including human spermatozoa.


2008 ◽  
Vol 52 (4) ◽  
pp. 216-223 ◽  
Author(s):  
Takuya Yano ◽  
Eri Nobusawa ◽  
Alexander Nagy ◽  
Setsuko Nakajima ◽  
Katsuhisa Nakajima

Sign in / Sign up

Export Citation Format

Share Document