The Iron Chelator L1 Potentiates Oxidative DNA Damage in Iron-Loaded Liver Cells

Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 632-638 ◽  
Author(s):  
Louise Cragg ◽  
Robert P. Hebbel ◽  
Wesley Miller ◽  
Alex Solovey ◽  
Scott Selby ◽  
...  

Iron-mediated carcinogenesis is thought to occur through the generation of oxygen radicals. Iron chelators are used in attempts to prevent the long term consequences of iron overload. In particular, 1,2-dimethyl-3-hydroxypyrid-4-one (L1), has shown promise as an effective chelator. Using an established hepatocellular model of iron overload, we studied the generation of iron-catalyzed oxidative DNA damage and the influence of iron chelators, including L1, on such damage. Iron loading of HepG2 cells was found to greatly exacerbate hydrogen peroxide–mediated DNA damage. Desferrithiocin was protective against iron/hydrogen peroxide–induced DNA damage; deferoxamine had no effect. In contrast, L1 exposure markedly potentiated hydrogen peroxide–mediated oxidative DNA damage in iron-loaded liver cells. However, when exposure to L1 was maintained during incubation with hydrogen peroxide, L1 exerted a protective effect. We interpret this as indicating that L1's potential toxicity is highly dependent on the L1:iron ratio. In vitro studies examining iron-mediated ascorbate oxidation in the presence of L1 showed that an L1:iron ratio must be at least 3 to 1 for L1 to inhibit the generation of free radicals; at lower concentrations of L1 increased oxygen radical generation occurs. In the clinical setting, such potentiation of iron-catalyzed oxidative DNA damage at low L1:iron ratios may lead to long-term toxicities that might preclude administration of L1 as an iron chelator. Whether this implication in fact extends to the in vivo situation will have to be verified in animal studies.

Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 632-638 ◽  
Author(s):  
Louise Cragg ◽  
Robert P. Hebbel ◽  
Wesley Miller ◽  
Alex Solovey ◽  
Scott Selby ◽  
...  

Abstract Iron-mediated carcinogenesis is thought to occur through the generation of oxygen radicals. Iron chelators are used in attempts to prevent the long term consequences of iron overload. In particular, 1,2-dimethyl-3-hydroxypyrid-4-one (L1), has shown promise as an effective chelator. Using an established hepatocellular model of iron overload, we studied the generation of iron-catalyzed oxidative DNA damage and the influence of iron chelators, including L1, on such damage. Iron loading of HepG2 cells was found to greatly exacerbate hydrogen peroxide–mediated DNA damage. Desferrithiocin was protective against iron/hydrogen peroxide–induced DNA damage; deferoxamine had no effect. In contrast, L1 exposure markedly potentiated hydrogen peroxide–mediated oxidative DNA damage in iron-loaded liver cells. However, when exposure to L1 was maintained during incubation with hydrogen peroxide, L1 exerted a protective effect. We interpret this as indicating that L1's potential toxicity is highly dependent on the L1:iron ratio. In vitro studies examining iron-mediated ascorbate oxidation in the presence of L1 showed that an L1:iron ratio must be at least 3 to 1 for L1 to inhibit the generation of free radicals; at lower concentrations of L1 increased oxygen radical generation occurs. In the clinical setting, such potentiation of iron-catalyzed oxidative DNA damage at low L1:iron ratios may lead to long-term toxicities that might preclude administration of L1 as an iron chelator. Whether this implication in fact extends to the in vivo situation will have to be verified in animal studies.


Materials ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 1427 ◽  
Author(s):  
Agmal Scherzad ◽  
Till Meyer ◽  
Norbert Kleinsasser ◽  
Stephan Hackenberg

Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 329
Author(s):  
Bohong Yu ◽  
Yinxian Yang ◽  
Qi Liu ◽  
Aiyan Zhan ◽  
Yang Yang ◽  
...  

The traditional iron chelator deferoxamine (DFO) has been widely used in the treatment of iron overload disease. However, DFO has congenital disadvantages, including a very short circular time and non-negligible toxicity. Herein, we designed a novel multi-arm conjugate for prolonging DFO duration in vivo and reducing cytotoxicity. The star-like 8-arm-polyethylene glycol (8-arm-PEG) was used as the macromolecular scaffold, and DFO molecules were bound to the terminals of the PEG branches via amide bonds. The conjugates displayed comparable iron binding ability to the free DFO. Furthermore, these macromolecule conjugates could significantly reduce the cytotoxicity of the free DFO, and showed satisfactory iron clearance capability in the iron overloaded macrophage RAW 246.7. The plasma half-life of the 8-arm-PEG-DFO conjugate was about 190 times than that of DFO when applied to an intravenously administered rat model. In conclusion, research indicated that these star-like PEG-based conjugates could be promising candidates as long circulating, less toxic iron chelators.


2006 ◽  
Vol 74 (12) ◽  
pp. 6839-6846 ◽  
Author(s):  
Ge Wang ◽  
Yang Hong ◽  
Adriana Olczak ◽  
Susan E. Maier ◽  
Robert J. Maier

ABSTRACT Neutrophil-activating protein (NapA) has been well documented to play roles in human neutrophil recruitment and in stimulating host cell production of reactive oxygen intermediates (ROI). A separate role for NapA in combating oxidative stress within H. pylori was implied by studies of various H. pylori mutant strains. Here, physiological analysis of a napA strain was the approach used to assess the iron-sequestering and stress resistance roles of NapA, its role in preventing oxidative DNA damage, and its importance to mouse colonization. The napA strain was more sensitive to oxidative stress reagents and to oxygen, and it contained fourfold more intracellular free iron and more damaged DNA than the parent strain. Pure, iron-loaded NapA bound to DNA, but native NapA did not, presumably linking iron levels sensed by NapA to DNA damage protection. Despite its in vitro phenotype of sensitivity to oxidative stress, the napA strain showed normal (like that of the wild type) mouse colonization efficiency in the conventional in vivo assay. By use of a modified mouse inoculation protocol whereby nonviable H. pylori is first inoculated into mice, followed by (live) bacterial strain administration, an in vivo role for NapA in colonization efficiency could be demonstrated. NapA is the critical component responsible for inducing host-mediated ROI production, thus inhibiting colonization by the napA strain. An animal colonization experiment with a mixed-strain infection protocol further demonstrated that the napA strain has significantly decreased ability to survive when competing with the wild type. H. pylori NapA has unique and separate roles in gastric pathogenesis.


Stroke ◽  
2011 ◽  
Vol 42 (12) ◽  
pp. 3587-3593 ◽  
Author(s):  
Fan Zhao ◽  
Ya Hua ◽  
Yangdong He ◽  
Richard F. Keep ◽  
Guohua Xi

Background and Purpose— Brain iron overload plays a detrimental role in brain injury after intracerebral hemorrhage (ICH). A recent study found that minocycline acts as an iron chelator and reduces iron-induced neuronal death in vitro. The present study investigated if minocycline reduces iron overload after ICH and iron-induced brain injury in vivo. Methods— This study was divided into 4 parts: (1) rats with different sizes of ICH were euthanized 3 days later for serum total iron and brain edema determination; (2) rats had an ICH treated with minocycline or vehicle. Serum iron, brain iron, and brain iron handling proteins were measured; (3) rats had an intracaudate injection of saline, iron, iron+minocycline, or iron+macrophage/microglia inhibitory factor and were used for brain edema and neuronal death measurements; and (4) rats had an intracaudate injection of iron and were treated with minocycline. The brains were used for edema measurement. Results— After ICH, serum total iron and brain nonheme iron increased and these changes were reduced by minocycline treatment. Minocycline also reduced ICH-induced upregulation of brain iron handling proteins and neuronal death. Intracaudate injection of iron caused brain edema, blood–brain barrier leakage, and brain cell death, all of which were significantly reduced by coinjection with minocycline. Conclusions— The current study found that minocycline reduces iron overload after ICH and iron-induced brain injury. It is also well known minocycline is an inhibitor of microglial activation. Minocycline may be very useful for patients with ICH because both iron accumulation and microglia activation contribute to brain damage after ICH.


2020 ◽  
Author(s):  
Francois Beaufay ◽  
Ellen Quarles ◽  
Allison Franz ◽  
Olivia Katamanin ◽  
Wei-Yun Wholey ◽  
...  

AbstractMaintaining cellular iron homeostasis is critical for organismal survival. Whereas iron depletion negatively affects the many metabolic pathways that depend on the activity of iron-containing enzymes, any excess of iron can cause the rapid formation of highly toxic reactive oxygen species (ROS) through Fenton chemistry. Although several cellular iron chelators have been identified, little is known about if and how organisms can prevent the Fenton reaction. By studying the effects of cisplatin, a commonly used anticancer drug and effective antimicrobial, we discovered that cisplatin elicits severe iron stress and oxidative DNA damage in bacteria. We found that both of these effects are successfully prevented by polyphosphate (polyP), an abundant polymer consisting solely of covalently linked inorganic phosphates. Subsequent in vitro and in vivo studies revealed that polyP provides a crucial iron reservoir under non-stress conditions, and effectively complexes free iron and blocks ROS formation during iron stress. These results demonstrate that polyP, a universally conserved biomolecule, plays a hitherto unrecognized role as an iron chelator and an inhibitor of the Fenton reaction.


Toxins ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 348 ◽  
Author(s):  
Leticia Díez-Quijada ◽  
Concepción Medrano-Padial ◽  
María Llana-Ruiz-Cabello ◽  
Giorgiana M. Cătunescu ◽  
Rosario Moyano ◽  
...  

Cylindrospermopsin (CYN) and microcystins (MC) are cyanotoxins that can occur simultaneously in contaminated water and food. CYN/MC-LR mixtures previously investigated in vitro showed an induction of micronucleus (MN) formation only in the presence of the metabolic fraction S9. When this is the case, the European Food Safety Authority recommends a follow up to in vivo testing. Thus, rats were orally exposed to 7.5 + 75, 23.7 + 237, and 75 + 750 μg CYN/MC-LR/kg body weight (b.w.). The MN test in bone marrow was performed, and the standard and modified comet assays were carried out to measure DNA strand breaks or oxidative DNA damage in stomach, liver, and blood cells. The results revealed an increase in MN formation in bone marrow, at all the assayed doses. However, no DNA strand breaks nor oxidative DNA damage were induced, as shown in the comet assays. The histopathological study indicated alterations only in the highest dose group. Liver was the target organ showing fatty degeneration and necrotic hepatocytes in centrilobular areas, as well as a light mononuclear inflammatory periportal infiltrate. Additionally, the stomach had flaking epithelium and mild necrosis of epithelial cells. Therefore, the combined exposure to cyanotoxins may induce genotoxic and histopathological damage in vivo.


2013 ◽  
Vol 155 (3) ◽  
pp. 455-459 ◽  
Author(s):  
Iyappan Rajan ◽  
Nithya Narayanan ◽  
Remitha Rabindran ◽  
P. R. Jayasree ◽  
P. R. Manish Kumar

Blood ◽  
2003 ◽  
Vol 102 (7) ◽  
pp. 2670-2677 ◽  
Author(s):  
Breno P. Esposito ◽  
William Breuer ◽  
Pornpan Sirankapracha ◽  
Pensri Pootrakul ◽  
Chaim Hershko ◽  
...  

Abstract Plasma non-transferrin-bound-iron (NTBI) is believed to be responsible for catalyzing the formation of reactive radicals in the circulation of iron overloaded subjects, resulting in accumulation of oxidation products. We assessed the redox active component of NTBI in the plasma of healthy and β-thalassemic patients. The labile plasma iron (LPI) was determined with the fluorogenic dihydrorhodamine 123 by monitoring the generation of reactive radicals prompted by ascorbate but blocked by iron chelators. The assay was LPI specific since it was generated by physiologic concentrations of ascorbate, involved no sample manipulation, and was blocked by iron chelators that bind iron selectively. LPI, essentially absent from sera of healthy individuals, was present in those of β-thalassemia patients at levels (1-16 μM) that correlated significantly with those of NTBI measured as mobilizer-dependent chelatable iron or desferrioxamine chelatable iron. Oral treatment of patients with deferiprone (L1) raised plasma NTBI due to iron mobilization but did not lead to LPI appearance, indicating that L1-chelated iron in plasma was not redox active. Moreover, oral L1 treatment eliminated LPI in patients. The approach enabled the assessment of LPI susceptibility to in vivo or in vitro chelation and the potential of LPI to cause tissue damage, as found in iron overload conditions. (Blood. 2003;102:2670-2677)


Sign in / Sign up

Export Citation Format

Share Document