NG-monomethyl-l-arginine inhibits erythropoietin gene expression by stimulating GATA-2

Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1716-1722 ◽  
Author(s):  
Takahisa Tarumoto ◽  
Shigehiko Imagawa ◽  
Ken Ohmine ◽  
Tadashi Nagai ◽  
Masato Higuchi ◽  
...  

Abstract NG-monomethyl-l-arginine (L-NMMA) has been reported to be elevated in uremic patients. Based on the hypothesis that the pathogenesis of the anemia of renal disease might be due to the perturbation of transcription factors of the erythropoietin (Epo) gene by L-NMMA, the present study was designed to investigate the effect of L-NMMA on Epo gene expression through the GATA transcription factor. L-NMMA caused decreased levels of NO, cyclic guanosine monophosphate (cGMP), and Epo protein in Hep3B cells. L-NAME (analogue of L-NMMA) also inhibited Epo production in anemic mice. Transfection of the Epo promoter-luciferase gene into Hep3B cells revealed that L-NMMA inhibited the Epo promoter activity. However, L-NMMA did not inhibit the Epo promoter activity when mutated Epo promoter (GATA to TATA) was transfected, and L-NMMA did not affect the enhancer activity. Electrophoretic mobility shift assays demonstrated the stimulation of GATA binding activity by L-NMMA. However, L-NMMA had no effect on the binding activity of hepatic nuclear factor-4, COUP-TF1, hypoxia-inducing factor-1, or NF-κB. Furthermore, cGMP inhibited the L-NMMA–induced GATA binding activity. L-NMMA also increased GATA-2 messenger RNA expression. These results demonstrate that L-NMMA suppresses Epo gene expression by up-regulation of the GATA transcription factor and support the hypothesis that L-NMMA is one of the candidate substances that underlie the pathogenesis of renal anemia.

Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1716-1722
Author(s):  
Takahisa Tarumoto ◽  
Shigehiko Imagawa ◽  
Ken Ohmine ◽  
Tadashi Nagai ◽  
Masato Higuchi ◽  
...  

NG-monomethyl-l-arginine (L-NMMA) has been reported to be elevated in uremic patients. Based on the hypothesis that the pathogenesis of the anemia of renal disease might be due to the perturbation of transcription factors of the erythropoietin (Epo) gene by L-NMMA, the present study was designed to investigate the effect of L-NMMA on Epo gene expression through the GATA transcription factor. L-NMMA caused decreased levels of NO, cyclic guanosine monophosphate (cGMP), and Epo protein in Hep3B cells. L-NAME (analogue of L-NMMA) also inhibited Epo production in anemic mice. Transfection of the Epo promoter-luciferase gene into Hep3B cells revealed that L-NMMA inhibited the Epo promoter activity. However, L-NMMA did not inhibit the Epo promoter activity when mutated Epo promoter (GATA to TATA) was transfected, and L-NMMA did not affect the enhancer activity. Electrophoretic mobility shift assays demonstrated the stimulation of GATA binding activity by L-NMMA. However, L-NMMA had no effect on the binding activity of hepatic nuclear factor-4, COUP-TF1, hypoxia-inducing factor-1, or NF-κB. Furthermore, cGMP inhibited the L-NMMA–induced GATA binding activity. L-NMMA also increased GATA-2 messenger RNA expression. These results demonstrate that L-NMMA suppresses Epo gene expression by up-regulation of the GATA transcription factor and support the hypothesis that L-NMMA is one of the candidate substances that underlie the pathogenesis of renal anemia.


2006 ◽  
Vol 290 (2) ◽  
pp. L351-L358 ◽  
Author(s):  
Loretta Sparkman ◽  
Hemakumar Chandru ◽  
Vijayakumar Boggaram

Ceramide, a sphingolipid, is an important signaling molecule in the inflammatory response. Mediators of acute lung injury such as TNF-α, platelet-activating factor, and Fas/Apo ligand stimulate sphingomyelin hydrolysis to increase intracellular ceramide levels. Surfactant protein B (SP-B), a hydrophobic protein of pulmonary surfactant, is essential for surfactant function and lung stability. In this study we investigated the effects of ceramide on SP-B gene expression in H441 lung epithelial cells. Ceramide decreased SP-B mRNA levels in control and dexamethasone-treated cells after 24-h incubation and inhibition of SP-B mRNA was associated with inhibition of immunoreactive SP-B. In transient transfections assays, ceramide inhibited SP-B promoter activity, indicating that the inhibitory effects are exerted at the transcriptional level. Deletion mapping experiments showed that the ceramide-responsive region is located within the −233/−80-bp region of human SP-B promoter. Electrophoretic mobility shift and reporter assays showed that ceramide reduced the DNA binding activity and transactivation capability of thyroid transcription factor 1 (TTF-1/Nkx2.1), a key factor for SP-B promoter activity. Collectively these data showed that ceramide inhibits SP-B gene expression by reducing the DNA biding activity of TTF-1/Nkx2.1 transcription factor. Protein kinase C inhibitor bisindolylmaleimide and the protein tyrosine kinase inhibitor genistein partially reversed ceramide inhibition, indicating that protein kinases play important roles in the ceramide inhibition of SP-B gene expression. Chemical inhibitors of de novo ceramide synthesis and sphingomyelin hydrolysis had no effect on TNF-α inhibition of SP-B promoter activity and mRNA levels, suggesting that ceramide does not play a role in the inhibition.


1992 ◽  
Vol 12 (2) ◽  
pp. 552-562
Author(s):  
L Pani ◽  
X B Quian ◽  
D Clevidence ◽  
R H Costa

The transcription factor hepatocyte nuclear factor 3 (HNF-3) is involved in the coordinate expression of several liver genes. HNF-3 DNA binding activity is composed of three different liver proteins which recognize the same DNA site. The HNF-3 proteins (designated alpha, beta, and gamma) possess homology in the DNA binding domain and in several additional regions. To understand the cell-type-specific expression of HNF-3 beta, we have defined the regulatory sequences that elicit hepatoma-specific expression. Promoter activity requires -134 bp of HNF-3 beta proximal sequences and binds four nuclear proteins, including two ubiquitous factors. One of these promoter sites interacts with a novel cell-specific factor, LF-H3 beta, whose binding activity correlates with the HNF-3 beta tissue expression pattern. Furthermore, there is a binding site for the HNF-3 protein within its own promoter, suggesting that an autoactivation mechanism is involved in the establishment of HNF-3 beta expression. We propose that both the LF-H3 beta and HNF-3 sites play an important role in the cell-type-specific expression of the HNF-3 beta transcription factor.


1996 ◽  
Vol 271 (6) ◽  
pp. L963-L971 ◽  
Author(s):  
M. A. Fiedler ◽  
K. Wernke-Dollries ◽  
J. M. Stark

Previous studies demonstrated that respiratory syncytial virus (RSV) infection of A549 cells induced interleukin (IL)-8 gene expression and protein release from the cells as early as 2 h after treatment [M. A. Fiedler, K. Wernke-Dollries, and J. M. Stark. Am. J. Physiol. 269 (Lung Cell. Mol. Physiol. 13): L865-L872, 1995; J. G. Mastronarde, M. M. Monick, and G. W. Hunninghake. Am. J. Respir. Cell Mol. Biol. 13: 237-244, 1995]. Furthermore, the effects of RSV at the 2-h time point were not dependent on viral replication. The studies reported here were designed to test the hypothesis that active and inactive RSV induce IL-8 gene expression in A549 cells at the 2-h time point by a mechanism dependent on the activation of the nuclear transcription factor NF-kappa B Northern blot analysis indicated that IL-8 gene expression occurred independent of protein synthesis 2 h after A549 cells were treated with RSV. Analysis of nuclear extracts from RSV-treated A549 cells by electrophoretic mobility shift assays demonstrated that NF-kappa B was activated as early as 15 min after RSV was added to the cells and remained activated for at least 90 min. In contrast, baseline levels of NF-IL-6 and activator protein-1 (AP-1) did not change over this period of time. Deoxyribonuclease footprint analysis of a portion of the 5'-flanking region of the IL-8 gene demonstrated two potential regions for transcription factor binding, which corresponded to the potential AP-1 binding site, and potential NF-IL-6 and NF-kappa B binding sites. Mutational analysis of the 200-bp 5'-untranslated region of the IL-8 gene demonstrated that activation of NF-kappa B and NF-IL-6 were required for RSV-induced transcriptional activation of the IL-8 gene.


2019 ◽  
Author(s):  
Spencer L. Nystrom ◽  
Matthew J. Niederhuber ◽  
Daniel J. McKay

ABSTRACTHow temporal cues combine with spatial inputs to control gene expression during development is poorly understood. Here, we test the hypothesis that the Drosophila transcription factor E93 controls temporal gene expression by regulating chromatin accessibility. Precocious expression of E93 early in wing development reveals that it can simultaneously activate and deactivate different target enhancers. Notably, the precocious patterns of enhancer activity resemble the wild-type patterns that occur later in development, suggesting that provision of E93 alters the competence of enhancers to respond to spatial cues. Genomic profiling reveals that precocious E93 expression is sufficient to regulate chromatin accessibility at a subset of its targets. These accessibility changes mimic those that normally occur later in development, indicating that precocious E93 accelerates the wild-type developmental program. Further, we find that target enhancers that do not respond to precocious E93 in early wings become responsive after a developmental transition, suggesting that parallel temporal pathways work alongside E93. These findings support a model wherein E93 expression functions as an instructive cue that defines a broad window of developmental time through control of chromatin accessibility.


2008 ◽  
Vol 60 (3) ◽  
pp. 379-387 ◽  
Author(s):  
Natasa Kovacevic-Grujicic ◽  
Kazunari Yokoyama ◽  
Milena Stevanovic

In this study, we examine the role of three highly conserved putative binding sites for Myc-associated zinc finger protein (MAZ) in regulation of the human SOX3 gene expression. Electrophoretic mobility shift and supershift assays indicate that complexes formed at two out of three MAZ sites of the human SOX3 promoter involve ubiquitously expressed MAZ protein. Furthermore, in cotransfection experiments we demonstrate that MAZ acts as a positive regulator of SOX3 gene transcription in both undifferentiated and RA-differentiated NT2/D1 cells. Although MAZ increased both basal and RA-induced promoter activity, our results suggest that MAZ does not contribute to RA inducibility of the SOX3 promoter during neuronal differentiation of NT2/D1 cells.


2001 ◽  
Vol 353 (3) ◽  
pp. 475-482 ◽  
Author(s):  
Florence FAVATIER ◽  
Barbara S. POLLA

Exposure of eukaryotic cells to a variety of reactive-oxygen-intermediate (ROI)-mediated sources of cellular injury, including heavy metals and UV radiation, induces the expression of heat-shock (HS) and stress-related genes among which is a 32–34kDa protein identified as inducible haem oxygenase-1 (HO-1). We previously showed that tobacco smoke (TS), a potent source of oxidants leading to oxidative stress, induces both HS proteins (HSPs) and HO-1 in normal human monocytes. Here we investigated the induction mechanisms of human HO-1 gene expression by TS in the human premonocytic line U937. Northern blotting and flow cytometry revealed a dose- and time-dependent induction of HO-1 mRNA and protein by TS. In order to clarify the role of transacting factors in this induction, electrophoretic mobility-shift analysis was performed with nuclear extracts from control, TS-, cadmium (Cd)- or H2O2-exposed cells, incubated with consensus elements and binding sites of the promoter region of HO-1[heat-shock factor (HSF), nuclear factor κB (NF-κB) and activator protein-1 (AP-1)] and the cadmium-responsive element (CdRE) isolated by Takeda, Ishizawa, Sato, Yoshida and Shibahara [(1994) J. Biol. Chem. 269, 22858–22867]. We report an inhibition of NF-κB activation by TS, no effect on AP-1 and a strong activation of CdRE-binding activity, whereas cadmium chelation from TS only partially prevented HO-1 induction. H2O2 also activated the CdRE-binding activity, and pretreatment with N-acetyl-l-cysteine, which replenishes the intracellular levels of GSH, suppressed, in TS-treated cells, both the CdRE-binding activity and the increased HO-1 expression.


2019 ◽  
Vol 116 (20) ◽  
pp. 9893-9902 ◽  
Author(s):  
Christopher M. Uyehara ◽  
Daniel J. McKay

The ecdysone pathway was among the first experimental systems employed to study the impact of steroid hormones on the genome. In Drosophila and other insects, ecdysone coordinates developmental transitions, including wholesale transformation of the larva into the adult during metamorphosis. Like other hormones, ecdysone controls gene expression through a nuclear receptor, which functions as a ligand-dependent transcription factor. Although it is clear that ecdysone elicits distinct transcriptional responses within its different target tissues, the role of its receptor, EcR, in regulating target gene expression is incompletely understood. In particular, EcR initiates a cascade of transcription factor expression in response to ecdysone, making it unclear which ecdysone-responsive genes are direct EcR targets. Here, we use the larval-to-prepupal transition of developing wings to examine the role of EcR in gene regulation. Genome-wide DNA binding profiles reveal that EcR exhibits widespread binding across the genome, including at many canonical ecdysone response genes. However, the majority of its binding sites reside at genes with wing-specific functions. We also find that EcR binding is temporally dynamic, with thousands of binding sites changing over time. RNA-seq reveals that EcR acts as both a temporal gate to block precocious entry to the next developmental stage as well as a temporal trigger to promote the subsequent program. Finally, transgenic reporter analysis indicates that EcR regulates not only temporal changes in target enhancer activity but also spatial patterns. Together, these studies define EcR as a multipurpose, direct regulator of gene expression, greatly expanding its role in coordinating developmental transitions.


2019 ◽  
Vol 20 (9) ◽  
pp. 2219 ◽  
Author(s):  
Tuo Liu ◽  
Tiao Luo ◽  
Xiangqian Guo ◽  
Xian Zou ◽  
Donghua Zhou ◽  
...  

The MYB transcription factor family members have been reported to play different roles in plant growth regulation, defense response, and secondary metabolism. However, MYB gene expression has not been reported in Panax ginseng. In this study, we isolated a gene from ginseng adventitious root, PgMYB2, which encodes an R2R3-MYB protein. Subcellular localization revealed that PgMYB2 protein was exclusively detected in the nucleus of Allium cepa epidermis. The highest expression level of PgMYB2 was found in ginseng root and it was significantly induced by plant hormones methyl jasmonate (MeJA). Furthermore, the binding interaction between PgMYB2 protein and the promoter of dammarenediol synthase (DDS) was found in the yeast strain Y1H Gold. Moreover, the electrophoretic mobility shift assay (EMSA) identified the binding site of the interaction and the results of transiently overexpressing PgMYB2 in plants also illustrated that it may positively regulate the expression of PgDDS. Based on the key role of PgDDS gene in ginsenoside synthesis, it is reasonable to believe that this report will be helpful for the future studies on the MYB family in P. ginseng and ultimately improving the ginsenoside production through genetic and metabolic engineering.


2019 ◽  
Vol 20 (12) ◽  
pp. 2981 ◽  
Author(s):  
Larsen ◽  
Davidsen ◽  
Dahlgaard ◽  
Pedersen ◽  
Troelsen

The Hippo pathway is important for tissue homeostasis, regulation of organ size andgrowth in most tissues. The co‐transcription factor yes‐associated protein 1 (YAP1) serves as a maindownstream effector of the Hippo pathway and its dysregulation increases cancer development andblocks colonic tissue repair. Nevertheless, little is known about the transcriptional regulation ofYAP1 in intestinal cells. The aim of this study to identify gene control regions in the YAP1 gene andtranscription factors important for intestinal expression. Bioinformatic analysis of caudal typehomeobox 2 (CDX2) and hepatocyte nuclear factor 4 alpha (HNF4α) chromatin immunoprecipitatedDNA from differentiated Caco‐2 cells revealed potential intragenic enhancers in the YAP1 gene.Transfection of luciferase‐expressing YAP1 promoter‐reporter constructs containing the potentialenhancer regions validated one potent enhancer of the YAP1 promoter activity in Caco‐2 and T84cells. Two potential CDX2 and one HNF4α binding sites were identified in the enhancer by in silicotranscription factor binding site analysis and protein‐DNA binding was confirmed in vitro usingelectrophoretic mobility shift assay. It was found by chromatin immunoprecipitation experimentsthat CDX2 and HNF4α bind to the YAP1 enhancer in Caco‐2 cells. These results reveal a previouslyunknown enhancer of the YAP1 promoter activity in the YAP1 gene, with importance for highexpression levels in intestinal epithelial cells. Additionally, CDX2 and HNF4α binding areimportant for the YAP1 enhancer activity in intestinal epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document