A G-to-A mutation in IVS-3 of the human gamma fibrinogen gene causing afibrinogenemia due to abnormal RNA splicing

Blood ◽  
2000 ◽  
Vol 96 (7) ◽  
pp. 2501-2505 ◽  
Author(s):  
Maurizio Margaglione ◽  
Rosa Santacroce ◽  
Donatella Colaizzo ◽  
Davide Seripa ◽  
Gennaro Vecchione ◽  
...  

Abstract Congenital afibrinogenemia is a rare autosomal recessive disorder characterized by a hemorrhagic diathesis of variable severity. Although more than 100 families with this disorder have been described, genetic defects have been characterized in few cases. An investigation of a young propositus, offspring of a consanguineous marriage, with undetectable levels of functional and quantitative fibrinogen, was conducted. Sequence analysis of the fibrinogen genes showed a homozygous G-to-A mutation at the fifth nucleotide (nt 2395) of the third intervening sequence (IVS) of the γ-chain gene. Her first-degree relatives, who had approximately half the normal fibrinogen values and showed concordance between functional and immunologic levels, were heterozygtes. The G-to-A change predicts the disappearance of a donor splice site. After transfection with a construct, containing either the wild-type or the mutated sequence, cells with the mutant construct showed an aberrant messenger RNA (mRNA), consistent with skipping of exon 3, but not the expected mRNA. Sequencing of the abnormal mRNA showed the complete absence of exon 3. Skipping of exon 3 predicts the deletion of amino acid sequence from residue 16 to residue 75 and shifting of reading frame at amino acid 76 with a premature stop codon within exon 4 at position 77. Thus, the truncated γ-chain gene product would not interact with other chains to form the mature fibrinogen molecule. The current findings show that mutations within highly conserved IVS regions of fibrinogen genes could affect the efficiency of normal splicing, giving rise to congenital afibrinogenemia.

Blood ◽  
2000 ◽  
Vol 96 (7) ◽  
pp. 2501-2505
Author(s):  
Maurizio Margaglione ◽  
Rosa Santacroce ◽  
Donatella Colaizzo ◽  
Davide Seripa ◽  
Gennaro Vecchione ◽  
...  

Congenital afibrinogenemia is a rare autosomal recessive disorder characterized by a hemorrhagic diathesis of variable severity. Although more than 100 families with this disorder have been described, genetic defects have been characterized in few cases. An investigation of a young propositus, offspring of a consanguineous marriage, with undetectable levels of functional and quantitative fibrinogen, was conducted. Sequence analysis of the fibrinogen genes showed a homozygous G-to-A mutation at the fifth nucleotide (nt 2395) of the third intervening sequence (IVS) of the γ-chain gene. Her first-degree relatives, who had approximately half the normal fibrinogen values and showed concordance between functional and immunologic levels, were heterozygtes. The G-to-A change predicts the disappearance of a donor splice site. After transfection with a construct, containing either the wild-type or the mutated sequence, cells with the mutant construct showed an aberrant messenger RNA (mRNA), consistent with skipping of exon 3, but not the expected mRNA. Sequencing of the abnormal mRNA showed the complete absence of exon 3. Skipping of exon 3 predicts the deletion of amino acid sequence from residue 16 to residue 75 and shifting of reading frame at amino acid 76 with a premature stop codon within exon 4 at position 77. Thus, the truncated γ-chain gene product would not interact with other chains to form the mature fibrinogen molecule. The current findings show that mutations within highly conserved IVS regions of fibrinogen genes could affect the efficiency of normal splicing, giving rise to congenital afibrinogenemia.


2008 ◽  
Vol 105 (2) ◽  
pp. 662-668 ◽  
Author(s):  
Nicola Laws ◽  
Renée A. Cornford-Nairn ◽  
Nicole Irwin ◽  
Russell Johnsen ◽  
Susan Fletcher ◽  
...  

The mdx mouse model of muscular dystrophy has a premature stop codon preventing production of dystrophin. This results in a progressive phenotype causing centronucleation of skeletal muscle fibers, muscle weakness, and fibrosis and kyphosis. Antisense oligonucleotides alter RNA splicing to exclude the nonsense mutation, while still maintaining the open reading frame to produce a shorter, but partially functional dystrophin protein that should ameliorate the extent of pathology. The present study investigated the benefits of chronic treatment of mdx mice by once-monthly deep intramuscular injections of antisense oligonucleotides into paraspinal muscles. After 8 mo of treatment, mdx mice had reduced development of kyphosis relative to untreated mdx mice, a benefit that was retained until completion of the study at 18 mo of age (16 mo of treatment). This was accompanied by reduced centronucleation in the latissimus dorsi and intercostals muscles and reduced fibrosis in the diaphragm and latissimus dorsi. These benefits were accompanied by a significant increase in dystrophin production. In conclusion, chronic antisense oligonucleotide treatment provides clear and ongoing benefits to paralumbar skeletal muscle, with associated marked reduction in kyphosis.


2020 ◽  
Vol 143 (6) ◽  
pp. 529-532
Author(s):  
Didem Torun  Özkan ◽  
Nazan Sarper ◽  
Nejat Akar

<b><i>Introduction:</i></b> Congenital afibrinogenemia is a rare autosomal recessive disorder characterized by bleeding that varies from mild to severe and by complete absence or extremely low levels of plasma and platelet fibrinogen. Hypofibrinogenemia is characterized by fibrinogen levels &#x3c;1.5 g/L. <b><i>Objective:</i></b> In this study, we analyzed fibrinogen beta chain gene mutations in Turkish afibrinogenemia and hypofibrinogenemia patients. <b><i>Methods:</i></b> We evaluated 20 afibrinogenemia and hypofibrinogenemia patients and 80 healthy controls. We have sequenced all exons of the <i>FGB</i> gene using the DNA isolated from the peripheral blood samples of patients and controls. <b><i>Results and Conclusion:</i></b> We found a nonsense mutation in exon 4 at nucleotide 630 that encoded serine amino acid, and in the same exon a missense mutation of T to C at nucleotide 647, resulting in a transition from leucine to proline (p.L198P) in a child with hypofibrinogenemia. These mutations have been shown for the first time in the same patient of Turkish descent. Furthermore, there was a novel heterozygous guanine-to-adenine nucleotide change in exon 3. This caused the change of arginine amino acid to threonine amino acid at position 136 (p.A136T) in a protein, which has not been described in the literature before.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5402-5402
Author(s):  
Samuel Li ◽  
Ruipeng Wei ◽  
Janet Wang ◽  
Vera Adema ◽  
Teodora Kuzmanovic ◽  
...  

Myeloperoxidase (MPO) on chromosome 17q22 codes for a heme-containing protein produced following commitment and during myeloid differentiation. Ultimately, mature neutrophil azurophilic granules have MPO as their major component. Consistently, high MPO expression, suggestive of a more differentiated type, has been associated with favorable outcomes in acute myeloid leukemia (AML). MPO deficiency is an extremely rare autosomal recessive disorder caused by any of a number of known germline variants, though the propensity to develop myeloid malignancy has not been reported for affected individuals. Somatic MPO mutations have not be identified in myeloid neoplasia (MN). In an effort to identify novel susceptibility genes and variants, we analyzed whole-exome sequence data from the germlines of 690 MN patients. Among all genes examined, MPO carried the highest burden of variants deemed pathogenic or likely pathogenic under the American College of Medical Genetics (ACMG) criteria; 19/690 MN patients (2.7%) carried a pathogenic/likely pathogenic MPO variant. Carriers of pathogenic MPO variants had higher rates of cytogenetic lesions, particularly -5 and complex karyotypes (Fig. A). The pathogenic variants found in our cohort are dominated by two substitutions: a splice site variant (c.2031-2A>C; eleven patients), and a missense variant (c.C1705T, p.R569W; seven patients) (Fig. B). Multi-species alignment shows that both of the corresponding wild-type alleles are highly conserved. Furthermore, both variants have significantly higher frequencies in our cohort (0.8% and 0.51%, respectively), as well as in the recently-published Beat AML patient cohort (0.8% and 0.6%), as compared to control populations (0.38% and 0.13% in gnomAD; OR 1.9, 95% CI 1.1-3.5, P<0.05 for c.2031-2A>C and OR 3.6, 95% CI 1.9-8.0, P<.0005 for p.R569W) (Fig. C). Of note is that the c.2031-2A>C variant has previously been reported in a family with hereditary MPO deficiency, with a splice variant-induced retention of intron 11 in MPO messenger RNA, inducing a premature stop codon. Another study showed that the R569W variant results in maturation arrest in the processing of MPO precursors. Analysis of the 3D structure of MPO shows that the R569W variant will abrogate heme binding (Fig. D). We next sought to validate our findings in an independent cohort. To this end, we queried next-generation DNA and RNA sequence from 1,119 myeloid malignancy patients from the Munich Leukemia Laboratory (MLL). Similar to our discovery cohort and the Beat AML group, the c.2031-2A>C variant had significantly higher allele frequency in confirmatory cohort (0.8%) than in population controls (0.38%), though the R569W did not (Fig. C). We found that MPO expression is significantly lower in carriers of the c.2031-2A>C allele (P = 0.024), as expected since the variant affects mRNA processing. There have been no prior reports of MPO as a MN susceptibility gene, but it is an appealing candidate. Taken together with evidence from earlier studies characterizing the impact of the variants highlighted here, our results support the hypothesis that inherited disruption of MPO confers myeloid malignancy susceptibility. Disclosures Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Maciejewski:Alexion: Consultancy; Novartis: Consultancy.


2021 ◽  
Author(s):  
Barbara Vona ◽  
Neda Mazaheri ◽  
Sheng-Jia Lin ◽  
Lucy A. Dunbar ◽  
Reza Maroofian ◽  
...  

AbstractDeafness, the most frequent sensory deficit in humans, is extremely heterogeneous with hundreds of genes involved. Clinical and genetic analyses of an extended consanguineous family with pre-lingual, moderate-to-profound autosomal recessive sensorineural hearing loss, allowed us to identify CLRN2, encoding a tetraspan protein, as a new deafness gene. Homozygosity mapping followed by exome sequencing identified a 14.96 Mb locus on chromosome 4p15.32p15.1 containing a likely pathogenic missense variant in CLRN2 (c.494C > A, NM_001079827.2) segregating with the disease. Using in vitro RNA splicing analysis, we show that the CLRN2 c.494C > A variant leads to two events: (1) the substitution of a highly conserved threonine (uncharged amino acid) to lysine (charged amino acid) at position 165, p.(Thr165Lys), and (2) aberrant splicing, with the retention of intron 2 resulting in a stop codon after 26 additional amino acids, p.(Gly146Lysfs*26). Expression studies and phenotyping of newly produced zebrafish and mouse models deficient for clarin 2 further confirm that clarin 2, expressed in the inner ear hair cells, is essential for normal organization and maintenance of the auditory hair bundles, and for hearing function. Together, our findings identify CLRN2 as a new deafness gene, which will impact future diagnosis and treatment for deaf patients.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Abhishek Kumar ◽  
Nagarajan Paramasivam ◽  
Obul Reddy Bandapalli ◽  
Matthias Schlesner ◽  
Tianhui Chen ◽  
...  

Abstract Background The most frequently identified strong cancer predisposition mutations for colorectal cancer (CRC) are those in the mismatch repair (MMR) genes in Lynch syndrome. Laboratory diagnostics include testing tumors for immunohistochemical staining (IHC) of the Lynch syndrome-associated DNA MMR proteins and/or for microsatellite instability (MSI) followed by sequencing or other techniques, such as denaturing high performance liquid chromatography (DHPLC), to identify the mutation. Methods In an ongoing project focusing on finding Mendelian cancer syndromes we applied whole-exome/whole-genome sequencing (WES/WGS) to 19 CRC families. Results Three families were identified with a pathogenic/likely pathogenic germline variant in a MMR gene that had previously tested negative in DHPLC gene variant screening. All families had a history of CRC in several family members across multiple generations. Tumor analysis showed loss of the MMR protein IHC staining corresponding to the mutated genes, as well as MSI. In family A, a structural variant, a duplication of exons 4 to 13, was identified in MLH1. The duplication was predicted to lead to a frameshift at amino acid 520 and a premature stop codon at amino acid 539. In family B, a 1 base pair deletion was found in MLH1, resulting in a frameshift and a stop codon at amino acid 491. In family C, we identified a splice site variant in MSH2, which was predicted to lead loss of a splice donor site. Conclusions We identified altogether three pathogenic/likely pathogenic variants in the MMR genes in three of the 19 sequenced families. The MLH1 variants, a duplication of exons 4 to 13 and a frameshift variant, were novel, based on the InSiGHT and ClinVar databases; the MSH2 splice site variant was reported by a single submitter in ClinVar. As a variant class, duplications have rarely been reported in the MMR gene literature, particularly those covering several exons.


Reproduction ◽  
2016 ◽  
Vol 152 (6) ◽  
pp. 665-672 ◽  
Author(s):  
Samantha A M Young ◽  
Haruhiko Miyata ◽  
Yuhkoh Satouh ◽  
Masanaga Muto ◽  
Martin R Larsen ◽  
...  

IZUMO1 is a protein found in the head of spermatozoa that has been identified as essential for sperm–egg fusion. Its binding partner in the egg has been discovered (JUNO); however, the roles of several domains within IZUMO1 remain unexplored. One such domain is the C-terminus, which undergoes major phosphorylation changes in the cytoplasmic portion of the protein during rat epididymal transit. However, the cytoplasmic tail of IZUMO1 in many species is highly variable, ranging from 55 to one amino acid. Therefore, to understand the role of the cytoplasmic tail of IZUMO1 in mouse, we utilised the gene manipulation system of CRISPR/Cas9 to generate a point mutation resulting in a premature stop codon, producing mice with truncated IZUMO1. Mice without the cytoplasmic tail of IZUMO1 showed normal fertility but decreased the amount of protein, indicating that whilst this region is important for the expression level of IZUMO1, it is dispensable for fertilisation in the mouse.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
LU XIAO ◽  
Haiqing Bai ◽  
James Boyer ◽  
Bo Ye ◽  
Ning Hou ◽  
...  

Lu Xiao, Haiqing Bai, James Boyer, Bo Ye, Ning Hou, Haodong Xu, and Faqian Li Department of Pathology and Laboratory Medicine and Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, USA Backgrounds: Canonical Wnt signaling appears to have multiphasic and often antagonistic roles in cardiac development. The molecular mechanism for these opposing actions is not clear. We hypothesized that alternative splicing of TCF7L2, a nuclear interaction partner of beta-catenin is involved in the specificity of canonical Wnt signaling. Methods: RT-PCR were performed on embryonic (E16.5) and neonatal (day 8) hearts with primers spanning the end of first exon and the beginning of last exon and the products were cloned and sequenced. Result: There are totally 18 exons identified so far in TCF7L2. We sequenced 56 clones and 53 clones (29 from day 8) and (24 from E16.5) contained TCF7L2 sequences. No exon 6 or exon 17 was found in TCF7L2 transcripts of mouse hearts. Most clones (more than 80%) from E16.5 and day 8 hearts excluded exon 4. Both E16.5 and day 8 hearts had one clone with exon 9 deletion which does not change reading frame and another with alterations in exon 3 that lead to reading frame shift and premature stop codon. As reported in other organs, there were extensive alternative splicing in the C-terminal exons 14, 15 and 16. The inclusion of exon 14 was more frequently in day 8 (18 of 29, 62%) than in E16.5 (8 of 24, 33%) hearts. The peptide encoded by exon 14 has conserved functional motif. Additionally, this alternative exon usage can change the C-terminus of TCF7L2 to include or exclude the so-called E tail with two binding motifs for C-terminal binding protein. Conclusion: The isoform switch of TCF7L2 occurs in neonatal mouse hearts and may have a role in the terminal differentiation of cardiac myocytes during this period.


Endocrinology ◽  
1997 ◽  
Vol 138 (4) ◽  
pp. 1413-1418 ◽  
Author(s):  
Patricia Grasso ◽  
Matthew C. Leinung ◽  
Stacy P. Ingher ◽  
Daniel W. Lee

Abstract In C57BL/6J ob/ob mice, a single base mutation of the ob gene in codon 105 results in the replacement of arginine by a premature stop codon and production of a truncated inactive form of leptin. These observations suggest that leptin activity may be localized, at least in part, to domains distal to amino acid residue 104. To investigate this possibility, we synthesized six overlapping peptide amides corresponding to residues 106–167 of leptin, and examined their effects on body weight and food intake in female C57BL/6J ob/ob mice. When compared with vehicle-injected control mice, weight gain by mice receiving 28 daily 1-mg ip injections of LEP-(106–120), LEP-(116–130), or LEP-(126–140) was significantly (P &lt; 0.01) reduced with no apparent toxicity. Weight gain by mice receiving LEP-(136–150), LEP-(146–160), or LEP-(156–167) was not significantly different from that of vehicle-injected control mice. The effects of LEP-(106–120), LEP-(116–130), or LEP-(126–140) were most pronounced during the first week of peptide treatment. Within 7 days, mice receiving these peptides lost 12.3%, 13.8%, and 9.8%, respectively, of their initial body weights. After 28 days, mice given vehicle alone, LEP-(136–150), LEP-(146–160), or LEP-(156–167) were 14.7%, 20.3%, 25.0%, and 24.8% heavier, respectively, than they were at the beginning of the study. Mice given LEP-(106–120) or LEP-(126–140) were only 1.8% and 4.2% heavier, respectively, whereas mice given LEP-(116–130) were 3.4% lighter. Food intake by mice receiving LEP-(106–120), LEP-(116–130), or LEP-(126–140), but not by mice receiving LEP-(136–150), LEP-(146–160), or LEP-(156–167), was reduced by 15%. The results of this study indicate 1) that leptin activity is localized, at least in part, in domains between residues 106–140; 2) that leptin-related peptides have in vivo effects similar to those of native leptin; and 3) offer hope for development of peptide analogs of leptin having potential application in human or veterinary medicine.


Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1435-1442 ◽  
Author(s):  
Edward M. Conway ◽  
Saskia Pollefeyt ◽  
Jan Cornelissen ◽  
Inky DeBaere ◽  
Marta Steiner-Mosonyi ◽  
...  

Survivin is a member of the inhibitor of apoptosis protein (IAP) family that is believed to play a role in oncogenesis. To elucidate further its physiologic role(s), we have characterized the murinesurvivin gene and complementary DNA (cDNA). The structural organization of the survivin gene, located on chromosome 11E2, is similar to that of its human counterpart, both containing 4 exons. Surprisingly, 3 full-length murine survivin cDNA clones were isolated, predicting the existence of 3 distinct survivin proteins. The longest open reading frame, derived from all 4 exons, predicts a 140-amino acid residue protein, survivin140, similar to human survivin, which contains a single IAP repeat and a COOH-terminal coiled-coil domain that links its function to the cell cycle. A second cDNA, which retains intron 3, predicts the existence of a 121-amino acid protein, survivin121 that lacks the coiled-coil domain. Removal of exon 2-derived sequences by alternative pre-messenger RNA (mRNA) splicing results in a third 40-amino acid residue protein, survivin40, lacking the IAP repeat and coiled-coil structure. Predictably, only recombinant survivin140 and survivin121 inhibited caspase-3 activity. All 3 mRNA species were variably expressed during development from 7.5 days postcoitum. Of the adult tissues surveyed, thymus and testis accumulated high levels of survivin140 mRNA, whereas survivin121-specific transcripts were detected in all tissues, while those representing survivin40 were absent. Human counterparts to the 3 survivin mRNA transcripts were identified in a study of human cells and tissues. The presence of distinct isoforms of survivin that are expressed differentially suggests that survivin plays a complex role in regulating apoptosis.


Sign in / Sign up

Export Citation Format

Share Document