A minimal c-fes cassette directs myeloid-specific expression in transgenic mice

Blood ◽  
2000 ◽  
Vol 96 (9) ◽  
pp. 3040-3048 ◽  
Author(s):  
Ahlke Heydemann ◽  
Soren Warming ◽  
Cynthia Clendenin ◽  
Kirsten Sigrist ◽  
J. Peter Hjorth ◽  
...  

Abstract The c-fes proto-oncogene encodes a 92-kd protein tyrosine kinase whose expression is restricted largely to myeloid and endothelial cells in adult mammals. A 13.2-kilobase (kb) humanc-fes genomic fragment was previously shown to containcis-acting element(s) sufficient for a locus control function in bone marrow macrophages. Locus control regions (LCRs) confer transgene expression in mice that is integration site independent, copy number dependent, and similar to endogenous murine messenger RNA levels. To identify sequences required for this LCR,c-fes transgenes were analyzed in mice. Myeloid-cell–specific, deoxyribonuclease-I–hypersensitive sites localized to the 3′ boundary of exon 1 and intron 3 are required to confer high-level transgene expression comparable to endogenous c-fes, independent of integration site. We define a minimal LCR element as DNA sequences (nucleotides +28 to +2523 relative to the transcription start site) located within intron 1 to intron 3 of the human locus. When this 2.5-kb DNA fragment was linked to a c-fes complementary DNA regulated by its own 446–base-pair promoter, integration-site–independent, copy-number–dependent transcription was observed in myeloid cells in transgenic mice. Furthermore, this 2.5-kb cassette directed expression of a heterologous gene (enhanced green fluorescent protein) exclusively in myeloid cells. The c-fes regulatory unit represents a novel reagent for targeting gene expression to macrophages and neutrophils in transgenic mice.

Blood ◽  
2000 ◽  
Vol 96 (9) ◽  
pp. 3040-3048
Author(s):  
Ahlke Heydemann ◽  
Soren Warming ◽  
Cynthia Clendenin ◽  
Kirsten Sigrist ◽  
J. Peter Hjorth ◽  
...  

The c-fes proto-oncogene encodes a 92-kd protein tyrosine kinase whose expression is restricted largely to myeloid and endothelial cells in adult mammals. A 13.2-kilobase (kb) humanc-fes genomic fragment was previously shown to containcis-acting element(s) sufficient for a locus control function in bone marrow macrophages. Locus control regions (LCRs) confer transgene expression in mice that is integration site independent, copy number dependent, and similar to endogenous murine messenger RNA levels. To identify sequences required for this LCR,c-fes transgenes were analyzed in mice. Myeloid-cell–specific, deoxyribonuclease-I–hypersensitive sites localized to the 3′ boundary of exon 1 and intron 3 are required to confer high-level transgene expression comparable to endogenous c-fes, independent of integration site. We define a minimal LCR element as DNA sequences (nucleotides +28 to +2523 relative to the transcription start site) located within intron 1 to intron 3 of the human locus. When this 2.5-kb DNA fragment was linked to a c-fes complementary DNA regulated by its own 446–base-pair promoter, integration-site–independent, copy-number–dependent transcription was observed in myeloid cells in transgenic mice. Furthermore, this 2.5-kb cassette directed expression of a heterologous gene (enhanced green fluorescent protein) exclusively in myeloid cells. The c-fes regulatory unit represents a novel reagent for targeting gene expression to macrophages and neutrophils in transgenic mice.


Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 319-329 ◽  
Author(s):  
S Dziennis ◽  
RA Van Etten ◽  
HL Pahl ◽  
DL Morris ◽  
TL Rothstein ◽  
...  

Abstract CD11b is the alpha chain of the Mac-1 integrin and is preferentially expressed in myeloid cells (neutrophils, monocytes, and macrophages). We have previously shown that the CD11b promoter directs cell-type- specific expression in myeloid lines using transient transfection assays. To confirm that these promoter sequences contain the proper regulatory elements for correct myeloid expression of CD11b in vivo, we have used the -1.7-kb human CD11b promoter to direct reporter gene expression in transgenic mice. Stable founder lines were generated with two different reporter genes, a Thy 1.1 surface marker and the Escherichia coli lacZ (beta-galactosidase) gene. Analysis of founders generated with each reporter demonstrated that the CD11b promoter was capable of driving high levels of transgene expression in murine macrophages for the lifetime of the animals. Similar to the endogenous gene, transgene expression was preferentially found in mature monocytes, macrophages, and neutrophils and not in myeloid precursors. These experiments indicate that the -1.7 CD11b promoter contains the regulatory elements sufficient for high-level macrophage expression. This promoter should be useful for targeting heterologous gene expression to mature myeloid cells.


2021 ◽  
Author(s):  
Bill Hendrix ◽  
Paul Hoffer ◽  
Rick Sanders ◽  
Steve Schwartz ◽  
Wei Zheng ◽  
...  

AbstractGene silencing in plants using topical dsRNA is a new approach that has the potential to be a sustainable component of the agricultural production systems of the future. However, more research is needed to enable this technology as an economical and efficacious supplement to current crop protection practices. Systemic gene silencing is one key enabling aspect. The objective of this research was to better understand systemic transgene silencing in Nicotiana benthamiana. Previous reports details sequencing of the integration site of the Green Fluorescent Protein (GFP) transgene in the well-known N. benthamiana GFP16C event revealed inadvertent co-integration of part of a bacterial transposase. To determine the effect of this transgene configuration on systemic silencing, new GFP transgenic lines with or without the transposase sequences were produced. GFP expression levels in the 19 single-copy events and three hemizygous 16C lines produced for this study ranged from 50-72% of the homozygous 16C line. GFP expression was equivalent to 16C in a two-copy event. Local GFP silencing was observed in all transgenic and 16C hemizygous lines after topical application of delivery formulations with a GFP targeting dsRNA. The 16C-like systemic silencing phenotype was only observed in the two-copy line. The partial transposase had no impact on transgene expression level, local GFP silencing, small RNA abundance and distribution, or systemic GFP silencing in the transgenic lines. We conclude that high transgene expression level is a key enabler of systemic transgene silencing in N. benthamiana.


1991 ◽  
Vol 11 (6) ◽  
pp. 3070-3074
Author(s):  
T Choi ◽  
M Huang ◽  
C Gorman ◽  
R Jaenisch

To investigate the role of splicing in the regulation of gene expression, we have generated transgenic mice carrying the human histone H4 promoter linked to the bacterial gene for chloramphenicol acetyltransferase (CAT), with or without a heterologous intron in the transcription unit. We found that CAT activity is 5- to 300-fold higher when the transgene incorporates a hybrid intron than with an analogous transgene precisely deleted for the intervening sequences. This hybrid intron, consisting of an adenovirus splice donor and an immunoglobulin G splice acceptor, stimulated expression in a broad range of tissues in the animal. Although the presence of the hybrid intron increased the frequency of transgenics with significant CAT activity, it did not affect the integration site-dependent variation commonly seen in transgene expression. To determine whether the enhancement is a general outcome of splicing or is dependent on the particular intron, we also produced equivalent transgenics carrying the widely used simian virus 40 small-t intron. We found that the hybrid intron is significantly more effective in elevating transgene expression. Our results suggest that inclusion of the generic intron in cDNA constructs may be valuable in achieving high levels of expression in transgenic mice.


1993 ◽  
Vol 13 (11) ◽  
pp. 6742-6751 ◽  
Author(s):  
I S Thorey ◽  
G Ceceña ◽  
W Reynolds ◽  
R G Oshima

The human keratin 18 (K18) gene is expressed in a variety of adult simple epithelial tissues, including liver, intestine, lung, and kidney, but is not normally found in skin, muscle, heart, spleen, or most of the brain. Transgenic animals derived from the cloned K18 gene express the transgene in appropriate tissues at levels directly proportional to the copy number and independently of the sites of integration. We have investigated in transgenic mice the dependence of K18 gene expression on the distal 5' and 3' flanking sequences and upon the RNA polymerase III promoter of an Alu repetitive DNA transcription unit immediately upstream of the K18 promoter. Integration site-independent expression of tandemly duplicated K18 transgenes requires the presence of either an 825-bp fragment of the 5' flanking sequence or the 3.5-kb 3' flanking sequence. Mutation of the RNA polymerase III promoter of the Alu element within the 825-bp fragment abolishes copy number-dependent expression in kidney but does not abolish integration site-independent expression when assayed in the absence of the 3' flanking sequence of the K18 gene. The characteristics of integration site-independent expression and copy number-dependent expression are separable. In addition, the formation of the chromatin state of the K18 gene, which likely restricts the tissue-specific expression of this gene, is not dependent upon the distal flanking sequences of the 10-kb K18 gene but rather may depend on internal regulatory regions of the gene.


2001 ◽  
Vol 75 (10) ◽  
pp. 4641-4648 ◽  
Author(s):  
Claudia M. Kowolik ◽  
Jun Hu ◽  
Jiing-Kuan Yee

ABSTRACT Vectors derived from murine leukemia virus (MLV) have been used in many human gene therapy clinical trials. However, insertion of the locus control regions (LCRs) derived from the β-globin gene locus or the CD2 gene into MLV vectors frequently led to vector rearrangement. Since the human immunodeficiency virus (HIV) sequence diverges significantly from the MLV sequence, we tested whether the LCR sequence is more stable in the context of an HIV vector. Clones derived from human fibrosarcoma line HT1080 cells transduced with an HIV vector containing the T-cell-specific CD2 LCR exhibit the same wide range of transgene expression as clones lacking the LCR. In contrast, Jurkat and primary T-cell clones derived from the transduction of the LCR-containing vector show, on average, a three- to fourfold increase in transgene expression relative to that of the control vector. This is consistent with previous observations that the CD2 LCR contains a T-cell-specific enhancer. In addition, the clones derived from the LCR-containing vector have a much lower clonal variation in transgene expression than those derived from the control vector. We also demonstrate that the level of transgene expression is proportional to the vector copy number. These results suggest that the human CD2 LCR sequence is compatible with HIV vector sequences and confers enhanced integration site-independent and copy number-dependent expression of the transgene. Thus, HIV vectors may represent the ideal vehicle to deliver genes controlled by various cis-acting elements such as LCRs.


1993 ◽  
Vol 13 (11) ◽  
pp. 6742-6751
Author(s):  
I S Thorey ◽  
G Ceceña ◽  
W Reynolds ◽  
R G Oshima

The human keratin 18 (K18) gene is expressed in a variety of adult simple epithelial tissues, including liver, intestine, lung, and kidney, but is not normally found in skin, muscle, heart, spleen, or most of the brain. Transgenic animals derived from the cloned K18 gene express the transgene in appropriate tissues at levels directly proportional to the copy number and independently of the sites of integration. We have investigated in transgenic mice the dependence of K18 gene expression on the distal 5' and 3' flanking sequences and upon the RNA polymerase III promoter of an Alu repetitive DNA transcription unit immediately upstream of the K18 promoter. Integration site-independent expression of tandemly duplicated K18 transgenes requires the presence of either an 825-bp fragment of the 5' flanking sequence or the 3.5-kb 3' flanking sequence. Mutation of the RNA polymerase III promoter of the Alu element within the 825-bp fragment abolishes copy number-dependent expression in kidney but does not abolish integration site-independent expression when assayed in the absence of the 3' flanking sequence of the K18 gene. The characteristics of integration site-independent expression and copy number-dependent expression are separable. In addition, the formation of the chromatin state of the K18 gene, which likely restricts the tissue-specific expression of this gene, is not dependent upon the distal flanking sequences of the 10-kb K18 gene but rather may depend on internal regulatory regions of the gene.


Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 319-329 ◽  
Author(s):  
S Dziennis ◽  
RA Van Etten ◽  
HL Pahl ◽  
DL Morris ◽  
TL Rothstein ◽  
...  

CD11b is the alpha chain of the Mac-1 integrin and is preferentially expressed in myeloid cells (neutrophils, monocytes, and macrophages). We have previously shown that the CD11b promoter directs cell-type- specific expression in myeloid lines using transient transfection assays. To confirm that these promoter sequences contain the proper regulatory elements for correct myeloid expression of CD11b in vivo, we have used the -1.7-kb human CD11b promoter to direct reporter gene expression in transgenic mice. Stable founder lines were generated with two different reporter genes, a Thy 1.1 surface marker and the Escherichia coli lacZ (beta-galactosidase) gene. Analysis of founders generated with each reporter demonstrated that the CD11b promoter was capable of driving high levels of transgene expression in murine macrophages for the lifetime of the animals. Similar to the endogenous gene, transgene expression was preferentially found in mature monocytes, macrophages, and neutrophils and not in myeloid precursors. These experiments indicate that the -1.7 CD11b promoter contains the regulatory elements sufficient for high-level macrophage expression. This promoter should be useful for targeting heterologous gene expression to mature myeloid cells.


Endocrinology ◽  
1998 ◽  
Vol 139 (5) ◽  
pp. 2605-2614 ◽  
Author(s):  
Jianwei Wang ◽  
Wen Niu ◽  
David P. Witte ◽  
Steven D. Chernausek ◽  
Yuri E. Nikiforov ◽  
...  

Abstract Insulin-like growth factor I (IGF-I) has been postulated to function as a smooth muscle cell (SMC) mitogen and to play a role in the pathogenesis of bladder hypertrophy, estrogen-induced uterine growth, and restenosis after arterial angioplasty. IGF-binding protein-4 (IGFBP-4) inhibits IGF-I action in vitro and is the most abundant IGFBP in the rodent arterial wall. To explore the function of this binding protein in vivo, transgenic mouse lines were developed harboring fusion genes consisting of a rat IGFBP-4 complementary DNA cloned downstream of either a −724 bp fragment of the mouse smooth muscle α-actin 5′-flanking region (SMP2-BP-4) or− 1074 bp, 63 bp of 5′-untranslated region, and 2.5 kb of intron 1 of smooth muscle α-actin (SMP8-BP-4). SMP2-BP-4 mice expressed low levels of the exogenous IGFBP-4 messenger RNA (mRNA), which was not specifically targeted to SMC-rich tissue environments, and were therefore not analyzed further. Six SMP8-BP-4 transgenic lines derived from separate founders were characterized. Mating of hemizygous SMP8-BP-4 mice with controls produced about 50% transgenic offspring, with equal sex distribution. Expression of IGFBP-4 mRNA in nontransgenic littermates was maximal in liver and kidney. By contrast, transgenic IGFBP-4 mRNA expression, distinguished because of a smaller transcript size, was confined to SMC-containing tissues, with the following hierarchy: bladder > aorta > stomach = uterus. There was no transgene expression in skeletal muscle, brain, or cardiac myocytes. The abundance of IGFBP-4 measured by Western ligand blotting or by immunoblotting, was 8- to 10-fold higher in aorta and bladder of SMP8-BP-4 mice than in their nontransgenic littermates, with no change in plasma IGFBP-4 levels. Transgenic mice exhibited a significant reduction in wet weight of SMC-rich tissues, including bladder, intestine, aorta, uterus, and stomach, with no change in total body or carcass weight. In situ hybridization showed that transgene expression was targeted exclusively to the muscular layers of the arteries, veins, bladder, ureter, stomach, intestine, and uterus. Overexpression of IGFBP-4 was associated with SMC hypoplasia, a reciprocal phenotype to that of transgenic mice overexpressing IGF-I under control of the same promoter (SMP8-IGF-I). Double transgenic mice derived from mating SMP8-BP-4 with SMP8-IGF-I animals showed a modest decrease in wet weight at selected SMC tissues. Although we cannot exclude that the effects of IGFBP-4 may be IGF independent, these data suggest that IGFBP-4 is a functional antagonist of IGF-I action on SMC in vivo.


Sign in / Sign up

Export Citation Format

Share Document