In vivo and in vitro apoptosis of human thymocytes are associated with nitrotyrosine formation

Blood ◽  
2001 ◽  
Vol 97 (11) ◽  
pp. 3521-3530 ◽  
Author(s):  
Nathalie Moulian ◽  
Frédérique Truffault ◽  
Yvette Morot Gaudry-Talarmain ◽  
Alain Serraf ◽  
Sonia Berrih-Aknin

Most thymocytes are deleted by thymic selection. The mechanisms of cell death are far from being clear. Peroxynitrite is a powerful oxidant produced in vivo by the reaction of superoxide (O2•−) with nitric oxide (NO•) and is able to mediate apoptosis. The aim of this study was to analyze whether NO and peroxynitrite could play a role in human thymocyte apoptosis. The results indicate that 3-(4-morpholinyl)-sydnonimine (SIN-1, an O2•− and NO• donor) and chemically synthesized peroxynitrite, but not S-nitroso-N-acetyl-D,L-penicillamine (SNAP, an NO• donor), have a strong apoptotic effect on human thymocytes (annexin V staining and TUNEL reaction). This effect was inhibited by exogenous superoxide dismutase (SOD), which interacts with O2•− and inhibits the formation of peroxynitrite. Because peroxynitrite formation requires NO•, thymic stromal cells were investigated to determine if they produced NO•. Inducible NOS was synthesized in cultured thymic epithelial cells in certain conditions of cytokine stimulation, as shown by messenger RNA levels, protein analysis, and nitrite production in the supernatants. SIN-1–treated thymocytes had high levels of tyrosine nitration, abolished by the addition of exogenous SOD. Tyrosine nitration was also detected in thymus extracts and sections, suggesting the presence of peroxynitrite in situ. In thymus sections, clusters of nitrotyrosine-positive cells were found in the cortex and corticomedullary areas colocalized with cells positive in the TUNEL reaction. These data indicate an association between human thymocyte apoptosis and nitrotyrosine formation. Thus, the results support the notion of a physiologic role for peroxynitrite in human thymocyte apoptosis.

Endocrinology ◽  
2005 ◽  
Vol 146 (6) ◽  
pp. 2501-2507 ◽  
Author(s):  
Ahmad Pazirandeh ◽  
Mikael Jondal ◽  
Sam Okret

Abstract We and others have previously reported that thymic epithelial cells produce glucocorticoids (GCs). In vitro studies have also suggested that thymic-derived GCs play a role in the development of thymocytes. However, until now it has not yet been established whether thymic-derived GCs play a role in thymopoiesis in vivo. To investigate this, we conditionally overexpressed the GC receptor (GR) in thymocytes using transgenic mice with a tetracycline-inducible expression system. The influence of systemic GCs was excluded by adrenalectomizing the transgenic mice before the GR induction. Conditional expression of transgenic GR in the thymocytes of adrenalectomized transgenic mice led to a decrease in the thymocyte number. This was associated with increased thymocyte apoptosis. The effect of thymic-derived GCs on the thymocytes was confirmed after transgenic GR induction in a thymic organ culture system. Finally, the GR antagonist RU486 increased thymocyte number in adrenalectomized mice in vivo and prevented a reduction in thymocyte number in thymic organ culture after transgenic GR induction. These observations further confirmed a role for the thymic-derived GCs in regulating thymocyte homeostasis in vivo.


2021 ◽  
Vol 9 (6) ◽  
pp. 1177
Author(s):  
Abdulaziz Alhazmi ◽  
Magloire Pandoua Nekoua ◽  
Hélène Michaux ◽  
Famara Sane ◽  
Aymen Halouani ◽  
...  

The thymus gland is a primary lymphoid organ for T-cell development. Various viral infections can result in disturbance of thymic functions. Medullary thymic epithelial cells (mTECs) are important for the negative selection of self-reactive T-cells to ensure central tolerance. Insulin-like growth factor 2 (IGF2) is the dominant self-peptide of the insulin family expressed in mTECs and plays a crucial role in the intra-thymic programing of central tolerance to insulin-secreting islet β-cells. Coxsackievirus B4 (CVB4) can infect and persist in the thymus of humans and mice, thus hampering the T-cell maturation and differentiation process. The modulation of IGF2 expression and protein synthesis during a CVB4 infection has been observed in vitro and in vivo in mouse models. The effect of CVB4 infections on human and mouse fetal thymus has been studied in vitro. Moreover, following the inoculation of CVB4 in pregnant mice, the thymic function in the fetus and offspring was disturbed. A defect in the intra-thymic expression of self-peptides by mTECs may be triggered by CVB4. The effects of viral infections, especially CVB4 infection, on thymic cells and functions and their possible role in the pathogenesis of type 1 diabetes (T1D) are presented.


1986 ◽  
Vol 59 (6) ◽  
pp. 679-695 ◽  
Author(s):  
Jeffrey L. Price ◽  
Brian B. Gourlie ◽  
Yuan Lin ◽  
Ru Chih C. Huang

2021 ◽  
Vol 30 (03) ◽  
pp. 222-229
Author(s):  
Matthias Hackl ◽  
Elisabeth Semmelrock ◽  
Johannes Grillari

AbstractMicroRNAs (miRNAs) are short (18–24 nucleotides) non-coding RNA sequences that regulate gene expression via binding of messenger RNA. It is estimated that miRNAs co-regulate the expression of more than 70% of all human genes, many of which fulfil important roles in bone metabolism and muscle function. In-vitro and in-vivo experiments have shown that the targeted loss of miRNAs in distinct bone cell types (osteoblasts and osteoclasts) results in altered bone mass and bone architecture. These results emphasize the biological relevance of miRNAs for bone health.MiRNAs are not only considered as novel bone biomarkers because of their biological importance to bone metabolism, but also on the basis of other favorable properties: 1) Secretion of miRNAs from cells enables “minimally invasive” detection in biological fluids such as serum. 2) High stability of miRNAs in serum enables the retrospective analysis of frozen blood specimens. 3) Quantification of miRNAs in the serum is based on the RT-PCR - a robust method that is considered as the gold standard for the analysis of nucleic acids in clinical diagnostics.With regard to osteoporosis, it has been shown that many of the known risk factors are characterized by distinct miRNA profiles in the affected tissues: i) age-related loss of bone mass, ii) sarcopenia, iii) changes in estrogen metabolism and related changes Loss of bone mass, and iv) diabetes. Therefore, numerous studies in recent years have dealt with the characterization of miRNAs in the serum of osteoporosis patients and healthy controls, and were able to identify recurring miRNA patterns that are characteristic of osteoporosis. These novel biomarkers have great potential for the diagnosis and prognosis of osteoporosis and its clinical outcomes.The aim of this article is to give a summary of the current state of knowledge on the research and application of miRNA biomarkers in osteoporosis.


2000 ◽  
Vol 93 (3) ◽  
pp. 805-810 ◽  
Author(s):  
Catherine Paugam-Burtz ◽  
Serge Molliex ◽  
Bernard Lardeux ◽  
Corinne Rolland ◽  
Michel Aubier ◽  
...  

Background Pulmonary surfactant is a complex mixture of proteins and phospholipids synthetized by alveolar type II cells. Volatile anesthetics have been shown to reduce surfactant phospholipid biosynthesis by rat alveolar type II cells. Surfactant-associated protein C (SP-C) is critical for the alveolar surfactant functions. Our goal was to evaluate the effects of halothane and thiopental on SP-C messenger RNA (mRNA) expression in vitro in rat alveolar type II cells and in vivo in mechanically ventilated rats. Methods In vitro, freshly isolated alveolar type II cells were exposed to halothane during 4 h (1, 2, 4%) and 8 h (1%), and to thiopental during 4 h (10, 100 micrometer) and 8 h (100 micrometer). In vivo, rats were anesthetized with intraperitoneal thiopental or inhaled 1% halothane and mechanically ventilated for 4 or 8 h. SP-C mRNA expression was evaluated by ribonuclease protection assay. Results In vitro, 4-h exposure of alveolar type II cells to thiopental 10 and 100 micrometer increased their SP-C mRNA content to 145 and 197%, respectively, of the control values. In alveolar type II cells exposed for 4 h to halothane 1, 2, and 4%, the SP-C mRNA content increased dose-dependently to 160, 235, and 275%, respectively, of the control values. In vivo, in mechanically ventilated rats, 4 h of halothane anesthesia decreased the lung SP-C mRNA content to 53% of the value obtained in control (nonanesthetized, nonventilated) animals; thiopental anesthesia increased to 150% the lung SP-C mRNA content. Conclusions These findings indicate that halothane and thiopental used at clinically relevant concentrations modulate the pulmonary SP-C mRNA content in rats. In vivo, the additive role of mechanical ventilation is suggested.


2002 ◽  
Vol 46 (10) ◽  
pp. 2648-2657 ◽  
Author(s):  
Brigitte Bau ◽  
Pia M. Gebhard ◽  
Jochen Haag ◽  
Thomas Knorr ◽  
Eckart Bartnik ◽  
...  

2021 ◽  
Author(s):  
Reinier Gesto-Borroto ◽  
Gabriela Meneses ◽  
Alejandro Espinosa-Cerón ◽  
Guillermo Granados ◽  
Jacquelynne Cervantes-Torres ◽  
...  

Abstract The genus Galphimia is widely distributed in Mexico, and is represented by 22 species, including medicinal species. The sedative and anti-inflammatory effects of galphimines produced by the species Galphimia glauca have been documented. Formerly, molecular studies using DNA barcodes demonstrated that nine populations botanically classified as Galphimia glauca belong to four different species of the genus Galphimia, and that only one exhibited the sedative properties; however, all the collected species showed anti-inflammatory activity. Other bioactive compounds like quercetin, galphins, galphimidins and glaucacetalins have been identified from methanolic extracts of plants botanically classified as Galphimia glauca. The aim of this work was to determine the anti-inflammatory activity of methanolic extracts of nine collected Galphimia spp. populations grown in Mexico. The possible modes of action were analyzed by evaluating the inhibition of LPS-induced inflammation processes both in vitro and in vivo. The nine populations were evaluated by an in vitro model using RAW 264.7 murine macrophage cells, and two populations (a galphimine-producing and a non-galphimine-producing population) were selected for the in vivo experiments of systemic inflammation and neuroinflammation in mice. Results suggest that an anti-inflammatory in vitro effect was present in all the studied populations, evidenced by the inhibition of nitrite production. An inhibitory systemic inflammation in mice was exerted by the two analyzed populations. In the neuroinflammation model, the anti-inflammatory effect was demonstrated in methanolic extract of the non-galphimine-producing population. For the populations of Galphimia spp. studied herein, the anti-inflammatory effect could not be correlated to the presence of galphimines.


1967 ◽  
Vol 2 (3) ◽  
pp. 359-370
Author(s):  
J. A. CHAPMAN ◽  
M. W. ELVES ◽  
J. GOUGH

Electron-microscope studies of cultured small lymphocytes from human peripheral blood transforming into larger blastoid cells in the presence of phytohaemagglutinin (PHA) show that the transformed cell possesses the preliminary stages of development of a protein-synthesizing system. The transformed blastoid cell has abundant ribosomes, although, in contrast with in vivo protein-secreting cells, many of these occur as single particles with only a small proportion Linked in polysomal clusters. Endoplasmic reticulum membranes occur to a very limited extent and with a marked paucity of attached ribosomal particles; the few attached particles are usually located in groups. Some endoplasmic reticulum membranes revealed degenerative changes in otherwise normal cells. A moderately well-developed Golgi apparatus was a characteristic feature of the cells. Apart from the relatively low proportion of polysomes, in vitro PHA-transformed blastoid cells are identical in fine structure to in vivo blast cells (otherwise known as immunoblasts, haemocytoblasts, etc.) occurring in the immune response. It is suggested that messenger-RNA production in PHA-stimulated transformed cells may be reduced and that this could explain the limited number of polysomes and the restricted development of the endoplasmic reticulum.


2001 ◽  
Vol 280 (6) ◽  
pp. R1815-R1822 ◽  
Author(s):  
Javier E. Stern ◽  
Mike Ludwig

To study modulatory actions of nitric oxide (NO) on GABAergic synaptic activity in hypothalamic magnocellular neurons in the supraoptic nucleus (SON), in vitro and in vivo electrophysiological recordings were obtained from identified oxytocin and vasopressin neurons. Whole cell patch-clamp recordings were obtained in vitro from immunochemically identified oxytocin and vasopressin neurons. GABAergic synaptic activity was assessed in vitro by measuring GABAA miniature inhibitory postsynaptic currents (mIPSCs). The NO donor and precursor sodium nitroprusside (SNP) and l-arginine, respectively, increased the frequency and amplitude of GABAA mIPSCs in both cell types ( P ≤ 0.001). Retrodialysis of SNP (50 mM) onto the SON in vivo inhibited the activity of both neuronal types ( P ≤ 0.002), an effect that was reduced by retrodialysis of the GABAA-receptor antagonist bicuculline (2 mM, P≤ 0.001). Neurons activated by intravenous infusion of 2 M NaCl were still strongly inhibited by SNP. These results suggest that NO inhibition of neuronal excitability in oxytocin and vasopressin neurons involves pre- and postsynaptic potentiation of GABAergic synaptic activity in the SON.


Sign in / Sign up

Export Citation Format

Share Document