An Electron-Microscope Study of the in vitro Transformation of Human Leucocytes

1967 ◽  
Vol 2 (3) ◽  
pp. 359-370
Author(s):  
J. A. CHAPMAN ◽  
M. W. ELVES ◽  
J. GOUGH

Electron-microscope studies of cultured small lymphocytes from human peripheral blood transforming into larger blastoid cells in the presence of phytohaemagglutinin (PHA) show that the transformed cell possesses the preliminary stages of development of a protein-synthesizing system. The transformed blastoid cell has abundant ribosomes, although, in contrast with in vivo protein-secreting cells, many of these occur as single particles with only a small proportion Linked in polysomal clusters. Endoplasmic reticulum membranes occur to a very limited extent and with a marked paucity of attached ribosomal particles; the few attached particles are usually located in groups. Some endoplasmic reticulum membranes revealed degenerative changes in otherwise normal cells. A moderately well-developed Golgi apparatus was a characteristic feature of the cells. Apart from the relatively low proportion of polysomes, in vitro PHA-transformed blastoid cells are identical in fine structure to in vivo blast cells (otherwise known as immunoblasts, haemocytoblasts, etc.) occurring in the immune response. It is suggested that messenger-RNA production in PHA-stimulated transformed cells may be reduced and that this could explain the limited number of polysomes and the restricted development of the endoplasmic reticulum.

Blood ◽  
1992 ◽  
Vol 80 (6) ◽  
pp. 1496-1501 ◽  
Author(s):  
Q Hamid ◽  
J Barkans ◽  
Q Meng ◽  
S Ying ◽  
JS Abrams ◽  
...  

Abstract Using the technique of in situ hybridization, we have shown that resting, unstimulated, human peripheral blood eosinophils, obtained from subjects with greater than 8% eosinophilia, transcribe and translate messenger RNA (mRNA) for interleukin-6 (IL-6). After incubation for 24 hours in culture medium alone, approximately 19% of eosinophils were positive for IL-6 mRNA. This may be a reflection of their in vivo activation, but also may suggest that the gene for this cytokine is constitutively expressed in eosinophils. After stimulation with interferon gamma (IFN gamma) (500 U/mL), the percentage of IL-6- mRNA+ cells increased to 51.3%. This was accompanied by an enhancement of intensity of the hybridization signals. The specificity of the IL-6 probe and the hybridization signals was confirmed by the use of an IL-6 sense probe and RNase pretreatment of cell preparations. Evidence for the translation of IL-6 mRNA was obtained by immunocytochemical staining. Normal and activated eosinophils gave IL-6-specific immunoreactivity with a polyclonal antihuman IL-6 antibody. A higher percentage of positive cells was detected among activated eosinophils than those treated with medium alone. Using a specific immunoenzymetric assay, we detected 190.15 +/- 18.1 and 403.32 +/- 213.6 pg/mL of IL-6 in supernatants of unstimulated and IFN gamma-treated (24 and 48 hours) eosinophils, respectively. These data indicate that eosinophils are an important cellular source of IL-6.


Blood ◽  
1992 ◽  
Vol 80 (6) ◽  
pp. 1496-1501 ◽  
Author(s):  
Q Hamid ◽  
J Barkans ◽  
Q Meng ◽  
S Ying ◽  
JS Abrams ◽  
...  

Using the technique of in situ hybridization, we have shown that resting, unstimulated, human peripheral blood eosinophils, obtained from subjects with greater than 8% eosinophilia, transcribe and translate messenger RNA (mRNA) for interleukin-6 (IL-6). After incubation for 24 hours in culture medium alone, approximately 19% of eosinophils were positive for IL-6 mRNA. This may be a reflection of their in vivo activation, but also may suggest that the gene for this cytokine is constitutively expressed in eosinophils. After stimulation with interferon gamma (IFN gamma) (500 U/mL), the percentage of IL-6- mRNA+ cells increased to 51.3%. This was accompanied by an enhancement of intensity of the hybridization signals. The specificity of the IL-6 probe and the hybridization signals was confirmed by the use of an IL-6 sense probe and RNase pretreatment of cell preparations. Evidence for the translation of IL-6 mRNA was obtained by immunocytochemical staining. Normal and activated eosinophils gave IL-6-specific immunoreactivity with a polyclonal antihuman IL-6 antibody. A higher percentage of positive cells was detected among activated eosinophils than those treated with medium alone. Using a specific immunoenzymetric assay, we detected 190.15 +/- 18.1 and 403.32 +/- 213.6 pg/mL of IL-6 in supernatants of unstimulated and IFN gamma-treated (24 and 48 hours) eosinophils, respectively. These data indicate that eosinophils are an important cellular source of IL-6.


1967 ◽  
Vol 2 (3) ◽  
pp. 371-376
Author(s):  
J. A. CHAPMAN ◽  
J. GOUGH ◽  
M. W. ELVES

Macrophages which develop in cultures of human peripheral blood have the typical ultrastructural features of macrophages occurring in other situations, in vivo and in vitro. The cultured cells usually have irregular nuclei and the cytoplasm possesses numerous digestion vacuoles containing debris; the cell outline is irregular with many filopodia. Other cells were laden with membrane-bounded granular bodies containing periodic-structured material of regular outline. Although it is concluded that no evidence about cell ancestry can be adduced from this morphological study, it seems likely from other work that many of these macrophages arise from lymphocytes.


1971 ◽  
Vol 121 (4) ◽  
pp. 683-694 ◽  
Author(s):  
T. M. Andrews ◽  
J. R. Tata

1. Methods for the separation of membrane-bound and free ribosomes from rat brain (cortex) and skeletal muscle were described and the preparations characterized by chemical analysis and electron microscopy. The attachment of ribosomes to membranes is not an artifact of the separation procedure. 2. The rate of incorporation of l-[14C]leucine into protein in vitro by the membrane-bound and free ribosomes from these two predominantly non-protein-secreting tissues is compared with that by similar preparations from rat liver. With all three tissues the initial rate was higher for the membrane-bound preparations. 3. By using the technique of discharging nascent polypeptide chains by incubation with puromycin followed by treatment with sodium deoxycholate (Redman & Sabatini, 1966), a major difference was observed for the vectorial discharge of nascent protein synthesized both in vivo and in vitro on membrane-bound ribosomes from liver, on the one hand, and brain and muscle, on the other. Whereas a large part of nascent protein synthesized on membrane-bound liver ribosomes was discharged into the membranous vesicles (presumably destined for export from the cell), almost all nascent protein from membrane-bound ribosomes from brain and muscle was released directly into the supernatant. Incorporation of [3H]puromycin into peptidyl-[3H]puromycin confirmed these findings. There was thus no difference between membrane-bound and free ribosomes from brain on the one hand, and from free polyribosomes from liver on the other, as far as the vectorial release of newly synthesized protein was concerned. 4. Incubation with puromycin also showed that the nascent chains, pre-formed in vivo and in vitro, are not involved in the attachment of ribosomes to membranes of the endoplasmic reticulum. 5. The differences in vectorial discharge from membrane-bound ribosomes from liver as compared with brain and muscle are not due to the different types of messenger RNA in the different tissues. Polyphenylalanine synthesized on incubation with polyuridylic acid was handled in the same way as polypeptides synthesized with endogenous messenger. 6. It is concluded that there is a major difference in the attachment of ribosomes to the membranes of the endoplasmic reticulum of secretory and non-secretory tissues, which results in a tissue-specific difference in the vectorial discharge of nascent proteins.


1997 ◽  
Vol 41 (5) ◽  
pp. 1082-1093 ◽  
Author(s):  
S M Daluge ◽  
S S Good ◽  
M B Faletto ◽  
W H Miller ◽  
M H St Clair ◽  
...  

1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, is a carbocyclic nucleoside with a unique biological profile giving potent, selective anti-human immunodeficiency virus (HIV) activity. 1592U89 was selected after evaluation of a wide variety of analogs containing a cyclopentene substitution for the 2'-deoxyriboside of natural deoxynucleosides, optimizing in vitro anti-HIV potency, oral bioavailability, and central nervous system (CNS) penetration. 1592U89 was equivalent in potency to 3'-azido-3'-deoxythymidine (AZT) in human peripheral blood lymphocyte (PBL) cultures against clinical isolates of HIV type 1 (HIV-1) from antiretroviral drug-naive patients (average 50% inhibitory concentration [IC50], 0.26 microM for 1592U89 and 0.23 microM for AZT). 1592U89 showed minimal cross-resistance (approximately twofold) with AZT and other approved HIV reverse transcriptase (RT) inhibitors. 1592U89 was synergistic in combination with AZT, the nonnucleoside RT inhibitor nevirapine, and the protease inhibitor 141W94 in MT4 cells against HIV-1 (IIIB). 1592U89 was anabolized intracellularly to its 5'-monophosphate in CD4+ CEM cells and in PBLs, but the di- and triphosphates of 1592U89 were not detected. The only triphosphate found in cells incubated with 1592U89 was that of the guanine analog (-)-carbovir (CBV). However, the in vivo pharmacokinetic, distribution, and toxicological profiles of 1592U89 were distinct from and improved over those of CBV, probably because CBV itself was not appreciably formed from 1592U89 in cells or animals (<2%). The 5'-triphosphate of CBV was a potent, selective inhibitor of HIV-1 RT, with Ki values for DNA polymerases (alpha, beta, gamma, and epsilon which were 90-, 2,900-, 1,200-, and 1,900-fold greater, respectively, than for RT (Ki, 21 nM). 1592U89 was relatively nontoxic to human bone marrow progenitors erythroid burst-forming unit and granulocyte-macrophage CFU (IC50s, 110 microM) and human leukemic and liver tumor cell lines. 1592U89 had excellent oral bioavailability (105% in the rat) and penetrated the CNS (rat brain and monkey cerebrospinal fluid) as well as AZT. Having demonstrated an excellent preclinical profile, 1592U89 has progressed to clinical evaluation in HIV-infected patients.


Author(s):  
Changhong Li ◽  
Kui Zhang ◽  
Guangzhao Pan ◽  
Haoyan Ji ◽  
Chongyang Li ◽  
...  

Abstract Background Dehydrodiisoeugenol (DEH), a novel lignan component extracted from nutmeg, which is the seed of Myristica fragrans Houtt, displays noticeable anti-inflammatory and anti-allergic effects in digestive system diseases. However, the mechanism of its anticancer activity in gastrointestinal cancer remains to be investigated. Methods In this study, the anticancer effect of DEH on human colorectal cancer and its underlying mechanism were evaluated. Assays including MTT, EdU, Plate clone formation, Soft agar, Flow cytometry, Electron microscopy, Immunofluorescence and Western blotting were used in vitro. The CDX and PDX tumor xenograft models were used in vivo. Results Our findings indicated that treatment with DEH arrested the cell cycle of colorectal cancer cells at the G1/S phase, leading to significant inhibition in cell growth. Moreover, DEH induced strong cellular autophagy, which could be inhibited through autophagic inhibitors, with a rction in the DEH-induced inhibition of cell growth in colorectal cancer cells. Further analysis indicated that DEH also induced endoplasmic reticulum (ER) stress and subsequently stimulated autophagy through the activation of PERK/eIF2α and IRE1α/XBP-1 s/CHOP pathways. Knockdown of PERK or IRE1α significantly decreased DEH-induced autophagy and retrieved cell viability in cells treated with DEH. Furthermore, DEH also exhibited significant anticancer activities in the CDX- and PDX-models. Conclusions Collectively, our studies strongly suggest that DEH might be a potential anticancer agent against colorectal cancer by activating ER stress-induced inhibition of autophagy.


2021 ◽  
Vol 165 ◽  
pp. 44
Author(s):  
Eleonora Cremonini ◽  
Maëlys Rouget ◽  
Solenne Arredi ◽  
Charlotte Devulder-Mercier ◽  
Robin Cellier ◽  
...  

1986 ◽  
Vol 59 (6) ◽  
pp. 679-695 ◽  
Author(s):  
Jeffrey L. Price ◽  
Brian B. Gourlie ◽  
Yuan Lin ◽  
Ru Chih C. Huang

Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2516-2525 ◽  
Author(s):  
K Meszaros ◽  
S Aberle ◽  
R Dedrick ◽  
R Machovich ◽  
A Horwitz ◽  
...  

Abstract Mononuclear phagocytes, stimulated by bacterial lipopolysaccharide (LPS), have been implicated in the activation of coagulation in sepsis and endotoxemia. In monocytes LPS induces the synthesis of tissue factor (TF) which, assembled with factor VII, initiates the blood coagulation cascades. In this study we investigated the mechanism of LPS recognition by monocytes, and the consequent expression of TF mRNA and TF activity. We also studied the inhibition of these effects of LPS by rBPI23, a 23-kD recombinant fragment of bactericidal/permeability increasing protein, which has been shown to antagonize LPS in vitro and in vivo. Human peripheral blood mononuclear cells, or monocytes isolated by adherence, were stimulated with Escherichia coli O113 LPS at physiologically relevant concentrations (&gt; or = 10 pg/mL). The effect of LPS was dependent on the presence of the serum protein LBP (lipopolysaccharide-binding protein), as shown by the potentiating effect of human recombinant LBP or serum. Furthermore, recognition of low amounts of LPS by monocytes was also dependent on CD14 receptors, because monoclonal antibodies against CD14 greatly reduced the LPS sensitivity of monocytes in the presence of serum or rLBP. Induction of TF activity and mRNA expression by LPS were inhibited by rBPI23. The expression of tumor necrosis factor showed qualitatively similar changes. Considering the involvement of LPS-induced TF in the potentially lethal intravascular coagulation in sepsis, inhibition of TF induction by rBPI23 may be of therapeutic benefit.


2021 ◽  
Vol 30 (03) ◽  
pp. 222-229
Author(s):  
Matthias Hackl ◽  
Elisabeth Semmelrock ◽  
Johannes Grillari

AbstractMicroRNAs (miRNAs) are short (18–24 nucleotides) non-coding RNA sequences that regulate gene expression via binding of messenger RNA. It is estimated that miRNAs co-regulate the expression of more than 70% of all human genes, many of which fulfil important roles in bone metabolism and muscle function. In-vitro and in-vivo experiments have shown that the targeted loss of miRNAs in distinct bone cell types (osteoblasts and osteoclasts) results in altered bone mass and bone architecture. These results emphasize the biological relevance of miRNAs for bone health.MiRNAs are not only considered as novel bone biomarkers because of their biological importance to bone metabolism, but also on the basis of other favorable properties: 1) Secretion of miRNAs from cells enables “minimally invasive” detection in biological fluids such as serum. 2) High stability of miRNAs in serum enables the retrospective analysis of frozen blood specimens. 3) Quantification of miRNAs in the serum is based on the RT-PCR - a robust method that is considered as the gold standard for the analysis of nucleic acids in clinical diagnostics.With regard to osteoporosis, it has been shown that many of the known risk factors are characterized by distinct miRNA profiles in the affected tissues: i) age-related loss of bone mass, ii) sarcopenia, iii) changes in estrogen metabolism and related changes Loss of bone mass, and iv) diabetes. Therefore, numerous studies in recent years have dealt with the characterization of miRNAs in the serum of osteoporosis patients and healthy controls, and were able to identify recurring miRNA patterns that are characteristic of osteoporosis. These novel biomarkers have great potential for the diagnosis and prognosis of osteoporosis and its clinical outcomes.The aim of this article is to give a summary of the current state of knowledge on the research and application of miRNA biomarkers in osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document