Crry, but not CD59 and DAF, is indispensable for murine erythrocyte protection in vivo from spontaneous complement attack

Blood ◽  
2002 ◽  
Vol 99 (10) ◽  
pp. 3707-3716 ◽  
Author(s):  
Takashi Miwa ◽  
Lin Zhou ◽  
Brendan Hilliard ◽  
Hector Molina ◽  
Wen-Chao Song

Decay-accelerating factor (DAF) and CD59 are 2 glycosylphosphatidylinositol-anchored membrane proteins that inhibit complement activation at the C3 and C5b-9 step, respectively. CD59 is considered critical for protecting erythrocytes from spontaneous complement attack, as deficiency of CD59 or CD59/DAF, but not of DAF alone, on human erythrocytes renders them sensitive to complement lysis in paroxysmal nocturnal hemoglobinuria syndrome. To evaluate the relative roles of CD59 and DAF in vivo, we have generated and studied a CD59 knockout and a CD59/DAF double-knockout mouse. CD59-deficient and CD59/DAF–double-deficient mouse erythrocytes were highly sensitive to antibody-induced complement lysis in vitro, yet neither CD59 knockout nor CD59/DAF double-knockout mouse developed spontaneous hemolytic anemia. Consistent with the latter observation, erythrocytes from the 2 strains of mutant mice were shown to have a normal lifespan in vivo. In contrast, mouse erythrocytes deficient in complement receptor 1 (CR1)–related gene y (Crry), a membrane C3 inhibitor with DAF and membrane cofactor protein activities, were rapidly eliminated from the circulation by a complement-dependent mechanism. Compared with DAF-deficient erythrocytes, Crry-deficient erythrocytes incurred higher levels of spontaneous C3 deposition in vivo. These findings demonstrate that CD59 and DAF are not indispensable on murine erythrocytes. Rather, effective C3 regulation on the cell surface, provided by Crry rather than DAF, is necessary for mouse erythrocytes to resist spontaneous complement attack. Our results raise the possibility that proper control of C3 activation may also be critical on human erythrocytes, where CR1 but not DAF could be the principal regulator of spontaneous C3 activation.

2018 ◽  
Vol 29 (6) ◽  
pp. 1624-1635 ◽  
Author(s):  
Clara Vilches ◽  
Emilia Boiadjieva-Knöpfel ◽  
Susanna Bodoy ◽  
Simone Camargo ◽  
Miguel López de Heredia ◽  
...  

Background Reabsorption of amino acids (AAs) across the renal proximal tubule is crucial for intracellular and whole organism AA homeostasis. Although the luminal transport step is well understood, with several diseases caused by dysregulation of this process, the basolateral transport step is not understood. In humans, only cationic aminoaciduria due to malfunction of the basolateral transporter y+LAT1/CD98hc (SLC7A7/SLC3A2), which mediates the export of cationic AAs, has been described. Thus, the physiologic roles of basolateral transporters of neutral AAs, such as the antiporter LAT2/CD98hc (SLC7A8/SLC3A2), a heterodimer that exports most neutral AAs, and the uniporter TAT1 (SLC16A10), which exports only aromatic AAs, remain unclear. Functional cooperation between TAT1 and LAT2/CD98hc has been suggested by in vitro studies but has not been evaluated in vivo.Methods To study the functional relationship of TAT1 and LAT2/CD98hc in vivo, we generated a double-knockout mouse model lacking TAT1 and LAT2, the catalytic subunit of LAT2/CD98hc (dKO LAT2-TAT1 mice).Results Compared with mice lacking only TAT1 or LAT2, dKO LAT2-TAT1 mice lost larger amounts of aromatic and other neutral AAs in their urine due to a tubular reabsorption defect. Notably, dKO mice also displayed decreased tubular reabsorption of cationic AAs and increased expression of y+LAT1/CD98hc.Conclusions The LAT2/CD98hc and TAT1 transporters functionally cooperate in vivo, and y+LAT1/CD98hc may compensate for the loss of LAT2/CD98hc and TAT1, functioning as a neutral AA exporter at the expense of some urinary loss of cationic AAs. Cooperative and compensatory mechanisms of AA transporters may explain the lack of basolateral neutral aminoacidurias in humans.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii295-iii295
Author(s):  
Mikaela Nevin ◽  
Janine Gallego ◽  
Xiaohua Song ◽  
Qiang Jiang ◽  
Alan Underhill ◽  
...  

Abstract BACKGROUND The identification of H3.3/H3.1K27M in most DIPG has changed our understanding of this disease. H3K27M mutations usually demonstrate global loss of H3K27 trimethylation (me3) with gain of H3K27 acetylation (ac). Single cell RNAseq has identified the putative cell of origin as oligodendroglial progenitor cells (OPC). The distalless gene family is necessary for the differentiation and tangential migration of committed neural progenitors to become GABAergic interneurons. Dlx1/Dlx2 double knockout (DKO) cells from the ganglionic eminences (GE) transplanted into a wild-type environment become oligodendrocytes. RESULTS We identified DLX2 occupancy of early (Olig2, Nkx2.2) and late (Myt1, Plp1) genes required for OPC differentiation in vivo and confirmed direct DLX2 protein-promoter DNA binding in vitro. Co-expression of Dlx2 with target sequences reduced reporter gene expression in vitro. There was increased expression of OLIG2, NKX2.2 and PLP-1 expression in vivo, consistent with de-repression in the absence of Dlx1/Dlx2 function. Transient over-expression of a Dlx2-GFP construct into murine DIPG cells from a GEMM that develops DIPG resulted in significant increases in expression of Gad isoforms with concomitant decreases in Olig2 and Nkx2.2. Dlx2-transfected mDIPG cells also demonstrated reduced migration, invasion and colony formation in vitro. Of significance, there was global restoration of H3K27me3 with corresponding loss of H3K27ac expression in transfected cells compared to controls. CONCLUSIONS DLX2 promotes GABAergic differentiation and migration while concomitantly repressing OPC differentiation in vivo. Developmental reprogramming of mDIPG cells by DLX2 demonstrates the potential role for directed differentiation strategies towards improving patient outcomes for this devastating pediatric cancer.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Alessandra Giannella ◽  
Giulio Ceolotto ◽  
Claudia Maria Radu ◽  
Arianna Cattelan ◽  
Elisabetta Iori ◽  
...  

Abstract Background Patients with type 2 diabetes (T2DM) have a prothrombotic state that needs to be fully clarified; microparticles (MPs) have emerged as mediators and markers of this condition. Thus, we investigate, in vivo, in T2DM either with good (HbA1c ≤ 7.0%; GGC) or poor (HbA1c > 7.0%; PGC) glycemic control, the circulating levels of MPs, and in vitro, the molecular pathways involved in the release of MPs from platelets (PMP) and tested their pro-inflammatory effects on THP-1 transformed macrophages. Methods In 59 T2DM, and 23 control subjects with normal glucose tolerance (NGT), circulating levels of CD62E+, CD62P+, CD142+, CD45+ MPs were determined by flow cytometry, while plasma levels of ICAM-1, VCAM-1, IL-6 by ELISA. In vitro, PMP release and activation of isolated platelets from GGC and PGC were investigated, along with their effect on IL-6 secretion in THP-1 transformed macrophages. Results We found that MPs CD62P+ (PMP) and CD142+ (tissue factor-bearing MP) were significantly higher in PGC T2DM than GGC T2DM and NGT. Among MPs, PMP were also correlated with HbA1c and IL-6. In vitro, we showed that acute thrombin exposure stimulated a significantly higher PMP release in PGC T2DM than GGC T2DM through a more robust activation of PAR-4 receptor than PAR-1 receptor. Treatment with PAR-4 agonist induced an increased release of PMP in PGC with a Ca2+-calpain dependent mechanism since this effect was blunted by calpain inhibitor. Finally, the uptake of PMP derived from PAR-4 treated PGC platelets into THP-1 transformed macrophages promoted a marked increase of IL-6 release compared to PMP derived from GGC through the activation of the NF-kB pathway. Conclusions These results identify PAR-4 as a mediator of platelet activation, microparticle release, and inflammation, in poorly controlled T2DM.


2015 ◽  
Vol 59 (5) ◽  
pp. 2479-2487 ◽  
Author(s):  
Keerti Jain ◽  
Ashwni Kumar Verma ◽  
Prabhat Ranjan Mishra ◽  
Narendra Kumar Jain

ABSTRACTThe present study aimed to develop an optimized dendrimeric delivery system for amphotericin B (AmB). Fifth-generation (5.0G) poly(propylene imine) (PPI) dendrimers were synthesized, conjugated with mannose, and characterized by use of various analytical techniques, including Fourier transform infrared spectroscopy (FTIR),1H nuclear magnetic resonance (1H-NMR) spectroscopic analysis, and atomic force microscopy (AFM). Mannose-conjugated 5.0G PPI (MPPI) dendrimers were loaded with AmB and evaluated for drug loading efficiency,in vitrodrug release profile, stability, hemolytic toxicity to human erythrocytes, cytotoxicity to and cell uptake by J774A.1 macrophage cells, antiparasitic activity against intracellularLeishmania donovaniamastigotes,in vivopharmacokinetic and biodistribution profiles, drug localization index, toxicity, and antileishmanial activity. AFM showed the nanometric size of the MPPI dendrimers, with a nearly globular architecture. The conjugate showed a good entrapment efficiency for AmB, along with pH-sensitive drug release. Highly significant reductions in toxicity toward human erythrocytes and macrophage cells, without compromising the antiparasitic activity of AmB, were observed. The dendrimeric formulation of AmB showed a significant enhancement of the parasiticidal activity of AmB toward intramacrophagicL. donovaniamastigotes. In thein vitrocell uptake studies, the formulation showed selectivity toward macrophages, with significant intracellular uptake. Further pharmacokinetic and organ distribution studies elucidated the controlled delivery behavior of the formulation. The drug localization index was found to increase significantly in macrophage-rich organs.In vivostudies showed a biocompatible behavior of MPPIA, with negligible toxicity even at higher doses, and promising antileishmanial activity. From the results, we concluded that surface-engineered dendrimers may serve as optimized delivery vehicles for AmB with enhanced activity and low or negligible toxicity.


1979 ◽  
Vol 150 (5) ◽  
pp. 1241-1254 ◽  
Author(s):  
S G Langreth ◽  
R T Reese

The antigenicity of altered structures induced by Plasmodium falciparum in the membranes of infected Aotus monkey and human erythrocytes was examined. Antisera were obtained from monkeys made immune to malaria. Bound antibodies were shown to be localized on the knob protrusions of infected erythrocytes of both human and monkey origin and from both in vitro and in vivo infections. Therefore, P. falciparum infection has produced similar antigenic changes in the erythrocyte surfaces of both man and monkey. Uninfected erythrocytes and all knobless-infected erythrocytes bound no antibody from immune sera. Strains of P. falciparum from widely different geographic areas that were cultured in vitro in human erythrocytes induced structures (knobs) which have common antigenicity. Merozoites were agglutinated by cross-linking of their cell coats when incubated with immune sera. The binding of ferritin-labeled antibody was heavy on the coats of both homologous and heterologous strains of the parasite, indicating that the merozoite surfaces of these strains share common antigens.


2021 ◽  
pp. 1-13
Author(s):  
Jonas Folke ◽  
Sertan Arkan ◽  
Isak Martinsson ◽  
Susana Aznar ◽  
Gunnar Gouras ◽  
...  

Background: α-synuclein (α-syn) aggregation contributes to the progression of multiple neurodegenerative diseases. We recently found that the isoform b of the co-chaperone DNAJB6 is a strong suppressor of a-syn aggregation in vivo and in vitro. However, nothing is known about the role of the endogenous isoform b of DNAJB6 (DNAJB6b) in health and disease, due to lack of specific antibodies. Objective: Here we generated a novel anti-DNAJB6b antibody to analyze the localization and expression this isoform in cells, in tissue and in clinical material. Methods: To address this we used immunocytochemistry, immunohistochemistry, as well as a novel quantitative DNAJB6 specific ELISA method. Results: The endogenous protein is mainly expressed in the cytoplasm and in neurites in vitro, where it is found more in dendrites than in axons. We further verified in vivo that DNAJB6b is expressed in the dopaminergic neurons of the substantia nigra pars compacta (SNpc), which is a neuronal subpopulation highly sensitive to α-syn aggregation, that degenerate to a large extend in patients with Parkinson’s disease (PD) and multiple system atrophy (MSA). When we analyzed the expression levels of DNAJB6b in brain material from PD and MSA patients, we found a downregulation of DNAJB6b by use of ELISA based quantification. Interestingly, this was also true when analyzing tissue from patients with progressive supranuclear palsy, a taupathic atypical parkinsonian disorder. However, the total level of DNAJB6 was upregulated in these three diseases, which may indicate an upregulation of the other major isoform of DNAJB6, DNAJB6a. Conclusion: This study shows that DNAJB6b is downregulated in several different neurodegenerative diseases, which makes it an interesting target to further investigate in relation to amyloid protein aggregation and disease progression.


1989 ◽  
Vol 141 (1) ◽  
pp. 133-149 ◽  
Author(s):  
W. Speckner ◽  
J. F. Schindler ◽  
C. Albers

Carp erythrocytes were fractionated by angle-head centrifugation which yielded fractions with a linear increase in density. Haematological examinations revealed that the heavier red blood cells of carp had greater volumes (MCV), more haemoglobin (MCH) and higher haemoglobin concentrations (MCHC) than light ones. The same experiments with human red cell fractions yielded a decrease in MCV, constant MCH and an increase in MCHC. Haemoglobin content in individual erythrocytes was also determined by scanning stage absorbance cytophotometry to establish the frequency distribution of the cellular haemoglobin contents. In carp, the distribution was symmetrical with the means increasing with density. No such change with cell density was found in human erythrocytes. Both carp and human erythrocytes incorporated [2-14C]glycine in vitro. After gel filtration, radioactivity was detected in carp, but not in human, haemoglobin fractions. 14C was found in all three haemoglobin fractions, obtained by isoelectric focusing, and was present in the haem and in the globin. [2-14C]glycine-labelled erythrocytes were reinjected into chronically cannulated carp and followed in vivo for several months. With time, the main peak of scintillation counts shifted from red cell fractions of low to high density. This is considered as evidence that density and age of red cells in carp are positively correlated and that erythrocytes can synthesize haemoglobin while circulating in the peripheral blood.


2010 ◽  
Vol 107 (7) ◽  
pp. 3146-3151 ◽  
Author(s):  
X. Sun ◽  
E. A. Barlow ◽  
S. Ma ◽  
S. R. Hagemeier ◽  
S. J. Duellman ◽  
...  

2018 ◽  
Vol 51 (1) ◽  
pp. 11-30 ◽  
Author(s):  
Xiaolan You ◽  
Yuanjie Wang ◽  
Jian Wu ◽  
Qinghong Liu ◽  
Dehu Chen ◽  
...  

Background/Aims: Increased expression of galectin-1 (Gal-1) in gastric cancer (GC) promotes metastasis and correlates with poor prognosis. The mechanisms by which Gal-1 promotes GC metastasis remain unknown. Methods: Gal-1and Sphingosine-1-phosphate receptor 1 (S1PR1) were determined by immunohistochemistry(IHC) and quantitative real time polymerase chain reaction (qRT-PCR) in GC specimens. Stably transfected Gal-1 or S1PR1 into SGC7901 and MGC-803 cells, western blot and invasion assays in vitro and nude mice tumorigenicity in vivo were also employed. Results: Overexpression of Gal-1 enhanced expression of S1PR1 in SGC-7901 cells, and increased cell invasion, while knockdown Gal-1 in MGC-803 cells reduced S1PR1 expression and diminished invasion. Simultaneous knockdown of Gal-1 and overexpression of S1PR1 in MGC803 cells rescued invasive ability of MGC803 cells. S1PR1 was associated with expression of epithelial-to-mesenchymal transition (EMT) markers in vitro and in clinical samples. EMT induced in MGC-803 cells by TGF-β1 was accompanied by S1PR1 activation, while knockdown of S1PR1 reduced response to TGF-β1, suggest that Gal-1 promotes GC invasion by activating EMT through a S1PR1-dependent mechanism. Overexpression of S1PR1 promoted subcutaneous xenograft growth and pulmonary metastases, and enhanced expression of EMT markers. Conclusion: Galectin-1 promotes metastasis in gastric cancer through a S1PR1- dependent mechanism, our results indicate that targeting S1PR1 may be a novel strategy to treat GC metastasis.


Sign in / Sign up

Export Citation Format

Share Document