scholarly journals Targeted inhibition of the MAPK pathway: emerging salvage option for progressive life-threatening multisystem LCH

2017 ◽  
Vol 1 (6) ◽  
pp. 352-356 ◽  
Author(s):  
Alexandra Kolenová ◽  
Raphaela Schwentner ◽  
Gunhild Jug ◽  
Ingrid Simonitsch-Klupp ◽  
Christoph Kornauth ◽  
...  

Key Points Single-agent vemurafenib leads to a rapid and sustained clinical response in severe multisystem LCH but does not eradicate the disease. Longitudinal assessment of BRAF V600E during treatment shows that clinical remission can occur despite significant amounts of mutated BRAF.

2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e19040-e19040 ◽  
Author(s):  
Steve Walston ◽  
Nicolaus Gordon ◽  
Arnab Chakravarti ◽  
Kamalakannan Palanichamy

e19040 Background: Melanoma only accounts for 4% of skin cancer while causing 75% of cancer related deaths. Worldwide incidence is increasing faster than any other cancer, and there are few effective treatment options for invasive disease translating to poor survival. The burgeoning understanding of molecular mechanisms driving carcinogenesis creates unique opportunities to develop targeted therapy. This is especially apparent in the case of BRAF in melanoma. BRAF V600E mutations occur in up to 50% of melanomas endowing these tumors with a constitutively activated MAPK pathway. Blockade of BRAF mutated tumors shows impressive initial responses above 80%. However, single-agent targeted therapy is often plagued with an emergence of resistant clones, and these impressive responses were transient. Diverse resistance mechanisms have been reported at the transcriptome level in patients treated with BRAF inhibitors. However, reports elucidating the prominent epigenetic regulators of resistance to BRAF inhibition are lacking. Methods: We sequenced the DNA of 14 melanoma cell lines and determined 9 had BRAF V600E mutation and 5 were wild type. We also sequenced cancer genes such as p53, PTEN, cKit, NRAS, etc. The BRAF mutant cells were exposed to PLX4032 (BRAF V600E inhibitor) and the concentrations were incrementally increased to develop resistant clones. This resistance was corroborated using annexin V / PI assay to display approximately a 50% decrease in apoptosis in drug resistant cells compared with control cells after 5 days of 5 µM PLX4032 exposure. The epigenome was profiled in control and resistance clones. Results: The statistically significant clusters were identified and currently we are validating their relevance using functional models. We are also profiling the epigene expression levels in melanoma patient biopsies to determine their predictive and prognostic value. Conclusions: It is likely the epigenome plays an integral role in the previously demonstrated mechanisms of BRAF resistance. Our study should illuminate connections with pathways conveying drug resistance to increase understanding of these mechanisms. Consequently, it may be possible to develop improved treatments and prognostic biomarkers.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 481-481
Author(s):  
Benjamin Heath Durham ◽  
Eli L. Diamond ◽  
Julien Haroche ◽  
Zhan Yao ◽  
Jing Ma ◽  
...  

Abstract Histiocytic neoplasms are clonal, hematopoietic disorders characterized by an accumulation of abnormal monocyte-derived dendritic cells or macrophages in Langerhans Cell (LCH) and non-Langerhans (non-LCH) histiocytoses, respectively. The discovery of the BRAF V600E mutation in ~50% of patients with LCH and the non-LCH Erdheim-Chester Disease (ECD) provided the first molecular target in these patients and novel insights into the pathogenesis of these disorders. However, recurrent mutations in the majority of the ~50% of BRAF V600E-wild type patients with non-LCH are unknown. Moreover, recurrent mutations outside of the MAP kinase pathway are undefined throughout histiocytic neoplasms. To address these issues, we performed whole exome sequencing (WES) of frozen biopsies from 24 patients with LCH (n=10) or ECD (n=14) paired with peripheral blood mononuclear cells. 13/24 patients also underwent RNA sequencing (RNA-seq). All mutations in activating kinases were validated by droplet-digital PCR, while targeted-capture next-generation sequencing validated all others. Both adult (n=18; n=2 with LCH) and pediatric cases (n=9; n=8 with LCH) were included. Using combined WES/RNA-seq, activating kinase alterations were identified in 100% of patients. In LCH, 60% and 40% had BRAF V600E and MAP2K1 mutations, respectively. In non-LCH 51%, 14%, 14%, and 7% were BRAFV600E, ARAF, MAP2K1, and NRAS mutant (Fig1A). Overall, a mean of 7 non-synonymous mutations per adult patient was identified (range 1-22) compared with 5 mutations per pediatric patient (range 4-9; p =ns). Mutations affecting diverse cellular processes were found to co-exist with kinase mutations including mutations in epigenetic modifiers and the p38/MAPK pathway. In addition to kinase point mutations, RNA-seq identified recurrent, in-frame kinase fusions-a first for these disorders. All identified fusions were validated using FISH and RT-PCR. This includes novel fusions in BRAF (RNF11-BRAF and CLIP2-BRAF), as well as therapeutically important fusions in ALK (2 separate KIF5B-ALK fusions) and NTRK1 (LMNA-NTRK1;Fig1B). Expression of each fusion in Ba/F3 cells conferred cytokine-independent growth. Importantly, the BRAF fusions were found to be sensitive to MEK inhibition but resistant to vemurafenib while the ALK fusions conferred sensitivity to the ALK inhibitors crizotinib or alectinib. We next interrogated a validation cohort of 37 BRAF V600E-wild type, non-LCH, formalin-fixed, paraffin-embedded tissue samples using targeted mutational profiling for MAP2K1, ARAF, NRAS, KRAS, and PIK3CA. This revealed activating mutations in MAP2K1 (32%; n=12), NRAS (16%; n=6), KRAS (11%; n=4), PIK3CA (8%; n=3), and ARAF (3%; n=1). Three of the investigated non-LCH patients with refractory disease and progressive organ dysfunction were treated with targeted therapies based on the discovery of novel kinase alterations described above. Treatment of 2 refractory MAP2K1- mutant, non-LCH patients with MEK inhibitors (trametinib or cobimetinib) resulted in dramatic clinical improvement (Fig1C). Both patients have been maintained on MEK inhibitor single-agent therapy with a sustained clinical response for >100 days. Further evidence of effective targeted inhibition was found in a refractory ECD patient carrying an ARAF S214A mutation. This patient failed to respond to 3 lines of prior therapies and suffered near blindness due to disease infiltration in the retina and optic nerves. Given a recent report of complete response to sorafenib in a lung cancer patient with an ARAF S214C mutation, we initiated sorafenib. Within 12 weeks, there was improvement in the patientÕs eyesight and decreased infiltrative disease, coinciding with >50% decrease in mutant ARAF DNA in plasma cell-free DNA. Whole exome and transcriptome sequencing identified activating kinase mutations or translocations in all patients with the common downstream effect of activating the MAPK pathway. The preliminary, dramatic, clinical efficacy observed with use of MEK and RAF inhibitors in MAP2K1 - and ARAF-mutated, non-LCH patients further supports the central role of targeting the MAPK pathway in these tumors. The discovery of the discussed mutations and fusions in diverse kinases provides critical new insights into the genetic events central to a spectrum of adult and pediatric histiocytic neoplasms. Figure 1. Figure 1. Disclosures Off Label Use: This abstract describes use of MEK inhibitors (both tremetinib and cobimetinib) as well as sorafenib for MEK1 and ARAF mutant histiocytosis. . Stephens:Foundation Medicine, Inc.: Employment, Equity Ownership. Miller:Foundation Medicine, Inc.: Employment, Equity Ownership. Ross:Foundation Medicine Inc.: Employment. Ali:Foundation Medicine Inc.: Employment. Hyman:Chugai Pharma: Consultancy; Biotherapeutics: Consultancy; Atara: Consultancy, Honoraria.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii414-iii414
Author(s):  
Daniel Muldoon ◽  
Guisheng Zhao ◽  
Carly Batt ◽  
Mallika Singh ◽  
Theodore Nicolaides

Abstract INTRODUCTION Activation of the RAS-MAPK signaling cascade is common in pediatric gliomas. Based on the role of SHP2 in RAS pathway signaling, we hypothesized that NF1-deficient pediatric glioma models would respond to SHP2 inhibitor monotherapy whereas BRAF-V600E gliomas would not. However, we postulated that the latter would exhibit increased sensitivity to a BRAF inhibitor (BRAFi) in combination with SHP2i. Here we demonstrate that the SHP2 inhibitors SHP099 and RMC-4550 (SHP2i) show significant single-agent activity in vitro against NF1-deficient glioma cells and that the combination of RMC-4550 with BRAFi shows increased activity in BRAF-V600E glioma cells relative to the single-agents. METHODS Using a panel of NF1 mutant/deficient and BRAF-V600E mutant glioma cell lines we examined effects on cell viability and protein expression levels of total and phosphorylated MEK, ERK, and AKT. RESULTS LN229 and U87 NF1-deficient glioma cells are sensitive to SHP2i alone but not A375 cells (melanoma, BRAF-V600E). Additionally, we show that in multiple BRAF-V600E glioma cell lines BRAFi sensitivity increases when combined with a SHP2i. Immunoblots show decreased expression of pERK and pMEK in LN229 cells following SHP2i exposure, while A375 cells maintain MAPK pathway signaling. A sustained decrease in the expression of pERK after 24 hours was observed in BRAF-V600E glioma cells with BRAFi in combination with SHP2i, consistent with relief of feedback inhibition. In vivo studies using orthotopic xenograft models are underway. CONCLUSION SHP2i shows preclinical activity in vitro against NF1-deficient pediatric glioma cell lines as a single-agent and against BRAF-V600E gliomas in combination with BRAFi.


2020 ◽  
Vol 8 (1) ◽  
pp. e000388 ◽  
Author(s):  
Natalia Maximova ◽  
Alessandra Maestro ◽  
Davide Zanon ◽  
Annalisa Marcuzzi

BackgroundImmune checkpoint inhibitors such as nivolumab and targeted BRAF inhibitors have dramatically altered the treatment outcomes of metastatic melanoma over the past few years. Skin toxicity is the most common adverse event (AE) related to the commonly used BRAF inhibitor vemurafenib, affecting more than 90% of patients. Vemurafenib-related severe AEs with early onset are reported in patients who were previously treated with anti-programmed cell death-1 (anti PD-1) antibodies. A prolonged administration of systemic steroids is the first-line treatment of severe or life-threatening AEs. We report the case of a woman suffering from vemurafenib-related severe, rapidly worsening Drug Rash with Eosinophilia and Systemic Symptoms (DRESS) syndrome, resolved in a few hours after single-dose administration of a combination of TNF-α antagonist infliximab with interleukin (IL)-6 receptor antagonist tocilizumab.Case presentationA 41-year-old woman treated with single-agent nivolumab presented with a melanoma progression. Biopsy samples were revised, revealing a BRAF V600E mutation. The patient was started on vemurafenib and cobimetinib treatment only 10 days after the last administration of nivolumab. On the third day of anti-BRAF therapy, profound lymphopenia was detected, and maculopapular eruption appeared afterward. Subsequently, the clinical conditions deteriorated further, and the woman was admitted on an emergency basis with high fever, respiratory and cardiocirculatory failure, diffuse rash, generalized edema, and lymphadenopathy. Diagnosis of DRESS syndrome with overexpressed capillary leakage was made. A single dose of tocilizumab was administered with an improvement of cardiocirculatory and renal function in a few hours. Because of worsening of liver function, skin lesions and mucositis, a single dose of infliximab was prescribed, and dramatic improvement was noted over the next 24 hours. Dabrafenib and trametinib were initiated, and coinciding with washout of infliximab from the patient’s blood, the drug toxicity recurred.ConclusionAnti-IL-6 and anti-TNF-α target treatment of very severe AEs may afford an immediate resolution of potentially life-threatening symptoms and reduce the duration and the costs of hospitalization. Maintenance of therapeutic infliximab blood concentrations permits an early switch to dabrafenib after vemurafenib-related AEs.


Blood ◽  
2016 ◽  
Vol 128 (21) ◽  
pp. 2533-2537 ◽  
Author(s):  
Rikhia Chakraborty ◽  
Thomas M. Burke ◽  
Oliver A. Hampton ◽  
Daniel J. Zinn ◽  
Karen Phaik Har Lim ◽  
...  

Key Points A BRAF gene fusion and small in-frame BRAF deletions were found in a subset of LCH lesions lacking BRAF-V600E or MAP2K1 mutations. In LCH model systems, responses to MAPK pathway inhibitors depend on the specific genetic alteration that drives ERK activation.


2005 ◽  
Vol 41 (4) ◽  
pp. 221-226 ◽  
Author(s):  
Antonella Borgatti Jeffreys ◽  
Deborah W. Knapp ◽  
William W. Carlton ◽  
Rosanne M. Thomas ◽  
Patty L. Bonney ◽  
...  

Combination chemotherapy is superior to single-agent chemotherapy for treating canine lymphoma, but the effect of each drug on efficacy remains unknown. By comparing 34 dogs treated with a modified cyclophosphamide, vincristine, prednisone (COP) chemotherapy protocol and 42 dogs given asparaginase in the induction phase of the same protocol, the effect of asparaginase on the chemotherapeutic protocol was determined. Both groups were compared based on clinical response at 2 weeks and 6 weeks, and on the progression-free interval. Asparaginase did not significantly increase the likelihood of a clinical remission or prolong the initial progression-free interval in the dogs studied.


Author(s):  
Cara Kenney ◽  
Tricia Kunst ◽  
Santhana Webb ◽  
Devisser Christina ◽  
Christy Arrowood ◽  
...  

SummaryBackground Preclinical evidence has suggested that a subset of pancreatic cancers with the G12R mutational isoform of the KRAS oncogene is more sensitive to MAPK pathway blockade than pancreatic tumors with other KRAS isoforms. We conducted a biomarker-driven trial of selumetinib (KOSELUGO™; ARRY-142886), an orally active, allosteric mitogen-activated protein kinase 1 and 2 (MEK1/2) inhibitor, in pancreas cancer patients with somatic KRASG12R mutations. Methods In this two-stage, phase II study (NCT03040986) patients with advanced pancreas cancer harboring somatic KRASG12R variants who had received at least one standard-of-care systemic therapy regimen received 75 mg selumetinib orally twice a day until disease progression or unacceptable toxicity occurred. The primary outcome of the study was best objective response (BOR). Results From August 2017 to February 2018 a total of 8 patients with confirmed somatic KRASG12R mutations and a median age of 61.5 years were treated with selumetinib. Seven out of eight (87.5%) had received two or more lines of prior systemic chemotherapy. After a median follow-up period of 8.5 months (range 2 to 20), three patients had stable disease for more than 6 months while receiving selumetinib. No patients achieved an objective partial response. Median progression-free survival (PFS) was 3.0 months (95% CI, 0.8–8.2) and median overall survival (OS) 9 months (95% CI, 2.5–20.9). Conclusion This study in heavily pre-treated pancreatic adenocarcinoma patients suggests alternative strategies beyond single agent MEK inhibition are required for this unique, molecular subset of pancreatic cancer patients. The trial was registered on February 2nd, 2017 under identifier NCT03040986 with ClinicalTrials.gov.


FACE ◽  
2021 ◽  
pp. 273250162110051
Author(s):  
Steven Daws ◽  
Kongkrit Chaiyasate ◽  
Arshi Lehal

Ameloblastomas are uncommon tumors of the odontogenic epithelium standardly treated with radical resection. Recent studies of the genetic landscape of ameloblastoma have revealed the frequent presence of the BRAF V600E mutation, suggesting a possible role for targeted chemotherapy. We present the case of a primary mandibular ameloblastoma found in a 13-year-old female with confirmed BRAF V600E mutation. Prior to invasive surgical intervention she was treated for 8 weeks with the MEK inhibitor trametinib, but her tumor demonstrated little radiographic, clinical, or histologic response. Previous case reports have shown ameloblastoma in adult patients to be responsive to other agents targeting the MAPK pathway. Our observations in the presented case demonstrate the need for further research into the utility of targeted chemotherapy in ameloblastoma treatment.


Blood ◽  
2014 ◽  
Vol 124 (10) ◽  
pp. 1655-1658 ◽  
Author(s):  
Noah A. Brown ◽  
Larissa V. Furtado ◽  
Bryan L. Betz ◽  
Mark J. Kiel ◽  
Helmut C. Weigelin ◽  
...  

Key Points Targeted genome sequencing reveals high-frequency somatic MAP2K1 mutations in Langerhans cell histiocytosis. MAP2K1 mutations are mutually exclusive with BRAF mutations and may have implications for the use of BRAF and MEK targeted therapy.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii369-iii369
Author(s):  
Diren Usta ◽  
Romain Sigaud ◽  
Juliane L Buhl ◽  
Florian Selt ◽  
Viktoria Marquardt ◽  
...  

Abstract Pilocytic astrocytomas (PAs) and other pediatric low-grade gliomas (pLGGs) exhibit aberrant activation of the MAPK signaling pathway caused by genetic alterations, most commonly KIAA1549:BRAF fusions, BRAF V600E and NF1 mutations. In such a single-pathway disease, novel drugs targeting the MAPK pathway (MAPKi) are prime candidates for treatment. We developed an assay suitable for pre-clinical testing of MAPKi in pLGGs, aiming at the identification of novel MAPK pathway suppressing synergistic drug combinations. We generated a reporter plasmid (pDIPZ) expressing destabilized firefly luciferase driven by a MAPK-responsive ELK-1-binding element, packaged in a lentiviral vector system. We stably transfected pediatric glioma cell lines with a BRAF fusion (DKFZ-BT66) and a BRAFV600E mutation (BT-40) background, respectively. Measurement of MAPK pathway activity was performed using the luciferase reporter. pERK protein levels were detected for validation. We performed a screen of a MAPKi library and calculated Combination Indices of selected combinations. The MAPKi library screen revealed MEK inhibitors as the class inhibiting the pathway with the lowest IC50s, followed by ERK and second generation RAF inhibitors. Synergistic effects in both BRAF-fusion and BRAFV600E mutation backgrounds were observed following combination treatments with different MAPKi classes (RAFi/MEKi, > RAFi/ERKi > MEKi/ERKi). We have generated a novel reporter assay for medium- to high-throughput pre-clinical drug testing of MAPKi in pLGG cell lines. MEK, ERK and next-generation RAF inhibitors were confirmed as potential treatment approaches for KIAA1549:BRAF and BRAFV600E mutated pLGGs. Synergistic suppression of MAPK pathway activity upon combination treatments was revealed using our assay in addition.


Sign in / Sign up

Export Citation Format

Share Document