scholarly journals Nix-mediated mitophagy regulates platelet activation and life span

2019 ◽  
Vol 3 (15) ◽  
pp. 2342-2354 ◽  
Author(s):  
Weilin Zhang ◽  
Qi Ma ◽  
Sami Siraj ◽  
Paul A. Ney ◽  
Junling Liu ◽  
...  

Abstract Platelet activation requires fully functional mitochondria, which provide a vital energy source and control the life span of platelets. Previous reports have shown that both general autophagy and selective mitophagy are critical for platelet function. However, the underlying mechanisms remain incompletely understood. Here, we show that Nix, a previously characterized mitophagy receptor that plays a role in red blood cell maturation, also mediates mitophagy in platelets. Genetic ablation of Nix impairs mitochondrial quality, platelet activation, and FeCl3-induced carotid arterial thrombosis without affecting the expression of platelet glycoproteins (GPs) such as GPIb, GPVI, and αIIbβ3. Metabolic analysis revealed decreased mitochondrial membrane potential, enhanced mitochondrial reactive oxygen species level, diminished oxygen consumption rate, and compromised adenosine triphosphate production in Nix−/− platelets. Transplantation of wild-type (WT) bone marrow cells or transfusion of WT platelets into Nix-deficient mice rescued defects in platelet function and thrombosis, suggesting a platelet-autonomous role (acting on platelets, but not other cells) of Nix in platelet activation. Interestingly, loss of Nix increases the life span of platelets in vivo, likely through preventing autophagic degradation of the mitochondrial protein Bcl-xL. Collectively, our findings reveal a novel mechanistic link between Nix-mediated mitophagy, platelet life span, and platelet physiopathology. Our work suggests that targeting platelet mitophagy Nix might provide new antithrombotic strategies.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3719-3719
Author(s):  
Pravin Patel ◽  
Meghna U. Naik ◽  
Ulhas Naik

Abstract When vascular endothelium is injured, circulating platelets are activated by primary agonists. Activation causes platelets to change shape, aggregate, and release secondary agonists which reinforce initial platelet activation as well as help recruit additional platelets to the site of vascular injury. MAP kinases have been shown to be important regulators of platelet function and secondary agonist production. One important secondary agonist released by activated platelets is TxA2. TxA2 is generated by metabolism of Arachidonic acid (AA). AA is released from platelet membrane phospholipids via the activity of PLAs. In platelets cPLA2 activity has been shown to be regulated by MAP kinases, however, the mechanisms which regulate platelet MAP kinase activity are not well understood. Our laboratory has identified that ASK1 (a Ser/Thr kinase of the MAP3K family) is present in both human and murine platelets and is activated by physiological agonists. ASK1 is known to be activated by a number of cellular stress response pathways. When challenged by cellular stress, ASK1 auto phosphorylates Thr845 on its activation loop, which is required for its ability to phosphorylate its substrates. Here we show that ASK1 regulates platelet function in part by regulating agonist-induced TxA2 generation. To determine the role of Ask1 in hemostasis and thrombosis, we evaluated in vivo thrombosis using carotid artery injury induced by 10% FeCl3 or pulmonary thromboembolism induced by injecting mixture of collagen/epinephrine. We found that genetic ablation of Ask1 renders mice significant protection from thrombosis. To determine the mechanism by which Ask1 regulates platelet activation leading to thrombosis, we evaluated the MAP kinase cascade using Ask1 null platelets. We found that genetic ablation of Ask1 blocked agonist-induced activation of the MAP2Ks (MKK3 and MKK4) in murine platelets. Since MKK3 can activate p38 and MKK4 can activate both p38 and JNK, we assessed MAPKs activation in murine platelets. When stimulated by various agonists, activation of p38 was entirely lost in Ask1 null platelets while activation of ERK1/2 and JNK remained unaffected indicating that Ask1 solely regulates p38 activity in platelets. Activity of p38 has been linked to agonist-induced generation of TxA2, an important contributing factor to thrombosis. We therefore evaluated agonist-induced production of TxA2 by measuring TxB2 (a stable metabolite of TxA2). We saw a substantial reduction (~50% in thrombin- and ~70% in convulxin-induced) production of TxA2 in Ask1 null platelets suggesting a separate Ask1 independent mechanism for TxA2 generation. Since TxA2 is a metabolite of AA, whose production in platelets is caused by cPLA2 enzymatic activity and cPLA2 activity is regulated by phosphorylation of its Ser505 residue by p38, we evaluated phosphorylation of cPLA2 (p-Ser505). We found that agonist-induced phosphorylation of cPLA2 (Ser505) was completely lost in Ask1 null platelets. Although in Ask1 null platelets cPLA2 phosphorylation (Ser505) is completely abolished, substantial amount (~50%) of TxA2 was generated in response to thrombin suggesting that there exists an Ask1 independent mechanism of activation of cPLA2. To rule out the possibility that an alternative PLA2 is responsible for the residual TxA2 production found in Ask1 null platelets, we evaluated agonist-induced TxA2 production in the presence of pyrrophenone, a cPLA2 specific inhibitor. Pretreatment with pyrrophenone completely abolished agonist-induced TxA2 production in murine as well as human platelets, suggesting that cPLA2 is solely responsible for the majority of agonist induced AA/TxA2 in platelets. In addition to its phosphorylation, it is documented that cPLA2 activity is also dependent on intracellular Ca2+, which facilitates translocation of cPLA2 to AA containing membranes. It is therefore possible that the remainder of TxA2 formed is dependent on Ca2+-dependent activity of cPLA2. Taken together these in vivo and in vitro results strongly suggest that ASK1 plays a key role in regulating thrombosis, in part, by regulating the signaling mechanisms involved in agonist-induced production of TxA2. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 115 (11) ◽  
pp. 1672-1679 ◽  
Author(s):  
Qi Ma ◽  
Weilin Zhang ◽  
Chongzhuo Zhu ◽  
Junling Liu ◽  
Quan Chen

Abstract Aims AKT kinase is vital for regulating signal transduction in platelet aggregation. We previously found that mitochondrial protein FUNDC2 mediates phosphoinositide 3-kinase (PI3K)/phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent AKT phosphorylation and regulates platelet apoptosis. The aim of this study was to evaluate the role of FUNDC2 in platelet activation and aggregation. Methods and results We demonstrated that FUNDC2 deficiency diminished platelet aggregation in response to a variety of agonists, including adenosine 5′-diphosphate (ADP), collagen, ristocetin/VWF, and thrombin. Consistently, in vivo assays of tail bleeding and thrombus formation showed that FUNDC2-knockout mice displayed deficiency in haemostasis and thrombosis. Mechanistically, FUNDC2 deficiency impairs the phosphorylation of AKT and downstream GSK-3β in a PI3K-dependent manner. Moreover, cGMP also plays an important role in FUNDC2/AKT-mediated platelet activation. This FUNDC2/AKT/GSK-3β/cGMP axis also regulates clot retraction of platelet-rich plasma. Conclusion FUNDC2 positively regulates platelet functions via AKT/GSK-3β/cGMP signalling pathways, which provides new insight for platelet-related diseases.


2020 ◽  
Vol 27 (1) ◽  
pp. 84-93
Author(s):  
Yuan Li ◽  
Hongxia Chu ◽  
Mingsheng Zhao ◽  
Chaoze Li ◽  
Yetong Guan ◽  
...  

Abstract Background Interleukin-37 (IL-37) is a new negative immune regulator. It has 5 splicing forms, IL-37a–e, and most research mainly focuses on IL-37b functions in diverse diseases. Our previous research found that IL-37d inhibits lipopolysaccharide-induced inflammation in endotoxemia through a mechanism different from that of IL-37b. However, whether IL-37d plays a role in colitis and the underlying mechanisms is still obscure. Herein, we identified whether IL-37d regulates NLRP3 inflammasome activity and determined its effect on colitis. Methods NLRP3 inflammasome in macrophages from IL-37d transgenic (IL-37dtg) and control wild type (WT) mice were activated by lipopolysaccharide and adenosine 5′-triphosphate. The expression of NLRP3 inflammasome components and its downstream effector, IL-1β, were detected by real-time polymerase chain reaction, western blot, and ELISA. The models of alum-induced peritonitis and dextran sodium sulfate (DSS)-induced colitis were used to investigate the function of IL-37d on regulating the activity of NLRP3 inflammasome in vivo. Results Our results showed that the activation of NLRP3 inflammasome in macrophage and alum-induced peritonitis was inhibited by IL-37d. Strikingly, IL-37d suppressed NLRP3 expression at the priming step via inhibiting NF-κB activation by transcriptional profiling. Moreover, the recombinant protein IL-37d attenuated NLRP3 inflammasome activation and the production of IL-1β, which could be reversed by IL-1R8 knockdown. Finally, IL-37d transgenic mice resisted DSS-induced acute colitis and NLRP3 inflammasome activation. Conclusion Interleukin-37d inhibits overactivation of the NLRP3 inflammasome through regulating NLRP3 transcription in an IL-1R8 receptor-mediated signaling pathway.


Hematology ◽  
2010 ◽  
Vol 2010 (1) ◽  
pp. 387-396 ◽  
Author(s):  
Lawrence Brass

Abstract The contribution of platelets to normal hemostasis and vascular disease is well described. However, recent studies make it clear that much remains to be learned about platelet activation at the single cell and the molecular level, and about the contribution of platelets to inflammation, tumor angiogenesis, and embryonic development. This article is divided into two themes. The first is an overview of current knowledge of the mechanisms that drive platelet function in vivo and a brief summary of some of the emerging ideas that are modifying older views. The second theme is a consideration of the strengths and weaknesses of the tools we have as hematologists to assess platelet function in the clinical setting, identify mechanisms, and evaluate the impact of antiplatelet agents.


Blood ◽  
2012 ◽  
Vol 119 (17) ◽  
pp. 4066-4072 ◽  
Author(s):  
Bethan Psaila ◽  
James B. Bussel ◽  
Matthew D. Linden ◽  
Bracken Babula ◽  
Youfu Li ◽  
...  

Abstract The effects of eltrombopag, a thrombopoietin-receptor agonist, on platelet function in immune thrombocytopenia (ITP) are not fully characterized. This study used whole blood flow cytometry to examine platelet function in 20 patients receiving eltrombopag treatment at days 0, 7, and 28. Platelet surface expression of activated GPIIb/IIIa, P-selectin, and GPIb was measured with and without low and high adenosine diphosphate (ADP) and thrombin receptor activating peptide (TRAP) concentrations. Before eltrombopag treatment with no ex vivo agonist, platelet activation was higher in ITP patients than controls. Platelet GPIb and activated GPIIb/IIIa expression without added agonist was unchanged following eltrombopag treatment, whereas a slight increase in P-selectin was observed. Expression of P-selectin and activated GPIIb/IIIa in response to high-dose ADP was lower during eltrombopag treatment than at baseline. Eltrombopag led to a slight increase in platelet reactivity to TRAP only in responders to eltrombopag but not to levels above those in controls; whole blood experiments demonstrated that this increase was probably because of higher platelet counts rather than higher platelet reactivity. In conclusion, although thrombocytopenic ITP patients have higher baseline platelet activation than controls, eltrombopag did not cause platelet activation or hyper-reactivity, irrespective of whether the platelet count increased.


2017 ◽  
Vol 117 (10) ◽  
pp. 1859-1867 ◽  
Author(s):  
Trevor P. Fidler ◽  
Jesse W. Rowley ◽  
Claudia Araujo ◽  
Luc H. Boudreau ◽  
Alex Marti ◽  
...  

SummaryIncreased intracellular reactive oxygen species (ROS) promote platelet activation. The sources of platelet-derived ROS are diverse and whether or not mitochondrial derived ROS, modulates platelet function is incompletely understood. Studies of platelets from patients with sickle cell disease, and diabetes suggest a correlation between mitochondrial ROS and platelet dysfunction. Therefore, we generated mice with a platelet specific knockout of superoxide dismutase 2 (SOD2-KO) to determine if increased mitochondrial ROS increases platelet activation. SOD2-KO platelets demonstrated decreased SOD2 activity and increased mitochondrial ROS, however total platelet ROS was unchanged. Mitochondrial function and content were maintained in non-stimulated platelets. However SOD2-KO platelets demonstrated decreased mitochondrial function following thrombin stimulation. In vitro platelet activation and spreading was normal and in vivo, deletion of SOD2 did not change tail-bleeding or arterial thrombosis indices. In pathophysiological models mediated by platelet-dependent immune mechanisms such as sepsis and autoimmune inflammatory arthritis, SOD2-KO mice were phenotypically identical to wildtype controls. These data demonstrate that increased mitochondrial ROS does not result in platelet dysfunction.


Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 398-403
Author(s):  
J Peng ◽  
P Friese ◽  
JN George ◽  
GL Dale ◽  
SA Burstein

To determine if interleukin-6 (IL-6) administration influences platelet function, platelet activation was analyzed sequentially in IL-6-treated (80 micrograms/kg/d) and control dogs. Platelet activation was determined in whole blood by flow cytometry by quantitating the binding of a monoclonal antibody to platelet surface P-selectin after stimulation with graded doses of thrombin. Administration of IL-6 resulted in a twofold decrease in the thrombin concentration required for induction of half-maximal P-selectin expression (ED50) compared with control animals. The ED50 returned to normal after cessation of IL- 6 administration. As measured by P-selectin expression, enhanced responsiveness to the strong agonist platelet activating factor (PAF) was also observed in the IL-6-treated dogs. IL-6 had no effect on the susceptibility of platelets to thrombin activation when incubated with anticoagulated dog blood. The data show that, in addition to augmenting the platelet count in normal dogs, IL-6 enhances the sensitivity of platelets to activation in response to thrombin and PAF.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Shuping Zhang ◽  
Alejandra Macias-Garcia ◽  
Jacob C Ulirsch ◽  
Jason Velazquez ◽  
Vincent L Butty ◽  
...  

Iron and heme play central roles in the production of red blood cells, but the underlying mechanisms remain incompletely understood. Heme-regulated eIF2α kinase (HRI) controls translation by phosphorylating eIF2α. Here, we investigate the global impact of iron, heme, and HRI on protein translation in vivo in murine primary erythroblasts using ribosome profiling. We validate the known role of HRI-mediated translational stimulation of integratedstressresponse mRNAs during iron deficiency in vivo. Moreover, we find that the translation of mRNAs encoding cytosolic and mitochondrial ribosomal proteins is substantially repressed by HRI during iron deficiency, causing a decrease in cytosolic and mitochondrial protein synthesis. The absence of HRI during iron deficiency elicits a prominent cytoplasmic unfolded protein response and impairs mitochondrial respiration. Importantly, ATF4 target genes are activated during iron deficiency to maintain mitochondrial function and to enable erythroid differentiation. We further identify GRB10 as a previously unappreciated regulator of terminal erythropoiesis.


2021 ◽  
Author(s):  
Leila Revollo ◽  
Glenn Merrill-Skoloff ◽  
Karen De Ceunynck ◽  
James R. Dilks ◽  
Mattia Bordoli ◽  
...  

AbstractTyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate Lonesome Kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet ɑ-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology, but have dramatic changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets demonstrate a significant decrease of several tyrosine phosphobands. Functional testing of VLK-deficient platelets shows decreased PAR4- and collagen-mediated platelet aggregation, but normal responses to ADP. Dense granule and α-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased PAR4-mediated Akt (S473) and Erk1/2(T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets demonstrate strongly reduced platelet accumulation and fibrin formation following laser-injury of cremaster arterioles compared to controls. These studies demonstrate that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.


Blood ◽  
2021 ◽  
Author(s):  
Leila Denise Revollo ◽  
Glenn Merrill-Skoloff ◽  
Karen De Ceunynck ◽  
James R Dilks ◽  
Shihui Guo ◽  
...  

Tyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate Lonesome Kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet ɑ-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology, but have significant changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets demonstrate a significant decrease of several tyrosine phosphobands. Functional testing of VLK-deficient platelets shows decreased PAR4- and collagen-mediated platelet aggregation, but normal responses to ADP. Dense granule and a-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased PAR4-mediated Akt (S473) and Erk1/2 (T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets demonstrate strongly reduced platelet accumulation and fibrin formation following laser-injury of cremaster arterioles compared to controls, but normal bleeding times. These studies demonstrate that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.


Sign in / Sign up

Export Citation Format

Share Document