scholarly journals Measures to reduce red cell use in patients with sickle cell disease requiring red cell exchange during a blood shortage

2021 ◽  
Vol 5 (12) ◽  
pp. 2586-2592
Author(s):  
Stacey Uter ◽  
Hyun Hyung An ◽  
Grace E. Linder ◽  
Stephan Kadauke ◽  
Deborah Sesok-Pizzini ◽  
...  

Abstract The COVID-19 pandemic has created major disruptions in health care delivery, including a severe blood shortage. The inventory of Rh and K antigen–negative red cell units recommended for patients with hemoglobinopathies became alarmingly low and continues to be strained. Because patients with sickle cell disease requiring chronic red cell exchange (RCE) incur a large demand for red cell units, we hypothesized that implementation of 2 measures could reduce blood use. First, obtaining the pretransfusion hemoglobin S (HbS) results by procedure start time would facilitate calculation of exact red cell volume needed to achieve the desired post-RCE HbS. Second, as a short-term conservation method, we identified patients for whom increasing the targeted end procedure hematocrit up to 5 percentage points higher than the pretransfusion level (no higher than 36%) was not medically contraindicated. The goal was to enhance suppression of endogenous erythropoiesis and thereby reduce the red cell unit number needed to maintain the same target HbS%. These 2 measures resulted in an 18% reduction of red cell units transfused to 50 patients undergoing chronic RCE during the first 6 months of the COVID-19 pandemic. Despite reduction of blood use, pretransfusion HbS% target goals were maintained and net iron accumulation was low. Both strategies can help alleviate a shortage of Rh and K antigen–negative red cells, and, more generally, transfusing red cell units based on precise red cell volume required can optimize patient care and judicious use of blood resources.

2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S157-S157
Author(s):  
F Anwar ◽  
M Almohammadi ◽  
A Garni ◽  
S Jamallail ◽  
W Alsamkari ◽  
...  

Abstract Introduction/Objective Red blood cell (RBC) transfusion is frequently required for patients with sickle cell disease (SCD). Development of alloantibodies in these patients complicates the blood bank process needed to identify these antibodies and to find compatible RBC units. The rate of alloimmunization has been reported as high as 47% in one study and 34.2% in another study from Eastern region of Saudi Arabia. The purpose of this study was to determine incidence and rate of RBC alloimmunization in the Saudi population in the Western region in SCD. Methods/Case Report A retrospective analysis of the immunohematological and transfusion history of a total of 161 SCD patients was reviewed, of which there 95 males and 66 females. All patients had erythrocytapheresis, ranging from one to 24 full red cell exchange sessions. A total of 490 red cell exchanges were performed and 4,914 units of blood were used. Extended compatibility to RhCcEe and K antigen was performed. Patient who developed alloimmunization to any of RhCcEe and K antigen were matched for Kidd, Duffy and MSN antigens for subsequent RBC requirements. Results (if a Case Study enter NA) The RBC alloimmunization incidence was 18% with a rate of 0.6 antibodies per 100 RBC transfusions. Alloimmunization in females was significantly higher than in the patients. Eighteen (11.2%) female patients demonstrated antibodies as compared to eleven (6.8%) male patients. Twelve patients (7.4%) had a history of at least one alloantibody and 17 (10.6%) had more than one. Antibodies found were directed against E (7.4%), K (5.6%), and D, C, c, S, M, Lea, Jk a, Chido/Rodgers, Fy a. Seven (4.3%) patients also had warm autoantibodies. Conclusion RBC alloimmunization incidence and rate in our study was lower to those reported in less heterogeneous population of donors and patients. Nonetheless, RBC alloimmunization still occurs in patients with SCD, often due to Rh variants or lack of consistency in the application of prophylactic antigen matching between institutions. Therefore, we believe that this rate can still be further reduced if all centers in the region establish transfusion programs to include at least RhCcEe and K phenotypic compatibility and communication mechanisms between major treating centers and transfusion centers in smaller cities to minimize the risks of exposing the patient to different RhCcEe and K phenotype and of developing RBC alloimmunization.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-30
Author(s):  
Yuanbin Song ◽  
Rana Gbyli ◽  
Liang Shan ◽  
Wei Liu ◽  
Yimeng Gao ◽  
...  

In vivo models of human erythropoiesis with generation of circulating mature human red blood cells (huRBC) have remained elusive, limiting studies of primary human red cell disorders. In our prior study, we have generated the first combined cytokine-liver humanized immunodeficient mouse model (huHepMISTRG-Fah) with fully mature, circulating huRBC when engrafted with human CD34+ hematopoietic stem and progenitor cells (HSPCs)1. Here we present for the first time a humanized mouse model of human sickle cell disease (SCD) which replicates the hallmark pathophysiologic finding of vaso-occlusion in mice engrafted with primary patient-derived SCD HSPCs. SCD is an inherited blood disorder caused by a single point mutation in the beta-globin gene. Murine models of SCD exclusively express human globins in mouse red blood cells in the background of murine globin knockouts2 which exclusively contain murine erythropoiesis and red cells and thus fail to capture the heterogeneity encountered in patients. To determine whether enhanced erythropoiesis and most importantly circulating huRBC in engrafted huHepMISTRG-Fah mice would be sufficient to replicate the pathophysiology of SCD, we engrafted it with adult SCD BM CD34+ cells as well as age-matched control BM CD34+ cells. Overall huCD45+ and erythroid engraftment in BM (Fig. a, b) and PB (Fig. c, d) were similar between control or SCD. Using multispectral imaging flow cytometry, we observed sickling huRBCs (7-11 sickling huRBCs/ 100 huRBCs) in the PB of SCD (Fig. e) but not in control CD34+ (Fig. f) engrafted mice. To determine whether circulating huRBC would result in vaso-occlusion and associated findings in SCD engrafted huHepMISTRG-Fah mice, we evaluated histological sections of lung, liver, spleen, and kidney from control and SCD CD34+ engrafted mice. SCD CD34+ engrafted mice lungs showed an increase in alveolar macrophages (arrowheads) associated with alveolar hemorrhage and thrombosis (arrows) but not observed control engrafted mice (Fig. g). Spleens of SCD engrafted mice showed erythroid precursor expansion, sickled erythrocytes in the sinusoids (arrowheads), and vascular occlusion and thrombosis (arrows) (Fig. h). Liver architecture was disrupted in SCD engrafted mice with RBCs in sinusoids and microvascular thromboses (Fig. i). Congestion of capillary loops and peritubular capillaries and glomeruli engorged with sickled RBCs was evident in kidneys (Fig. j) of SCD but not control CD34+ engrafted mice. SCD is characterized by ineffective erythropoiesis due to structural abnormalities in erythroid precursors3. As a functional structural unit, erythroblastic islands (EBIs) represent a specialized niche for erythropoiesis, where a central macrophage is surrounded by developing erythroblasts of varying differentiation states4. In our study, both SCD (Fig. k) and control (Fig. l) CD34+ engrafted mice exhibited EBIs with huCD169+ huCD14+ central macrophages surrounded by varying stages of huCD235a+ erythroid progenitors, including enucleated huRBCs (arrows). This implies that huHepMISTRG-Fah mice have the capability to generate human EBIs in vivo and thus represent a valuable tool to not only study the effects of mature RBC but also to elucidate mechanisms of ineffective erythropoiesis in SCD and other red cell disorders. In conclusion, we successfully engrafted adult SCD patient BM derived CD34+ cells in huHepMISTRG-Fah mice and detected circulating, sickling huRBCs in the mouse PB. We observed pathological changes in the lung, spleen, liver and kidney, which are comparable to what is seen in the established SCD mouse models and in patients. In addition, huHepMISTRG-Fah mice offer the opportunity to study the role of the central macrophage in human erythropoiesis in health and disease in an immunologically advantageous context. This novel mouse model could therefore serve to open novel avenues for therapeutic advances in SCD. Reference 1. Song Y, Shan L, Gybli R, et. al. In Vivo reconstruction of Human Erythropoiesis with Circulating Mature Human RBCs in Humanized Liver Mistrg Mice. Blood. 2019;134:338. 2. Ryan TM, Ciavatta DJ, Townes TM. Knockout-transgenic mouse model of sickle cell disease. Science. 1997;278(5339):873-876. 3. Blouin MJ, De Paepe ME, Trudel M. Altered hematopoiesis in murine sickle cell disease. Blood. 1999;94(4):1451-1459. 4. Manwani D, Bieker JJ. The erythroblastic island. Curr Top Dev Biol. 2008;82:23-53. Disclosures Xu: Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. Flavell:Zai labs: Consultancy; GSK: Consultancy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-20
Author(s):  
Victoria Brooks ◽  
Oluwalonimi Adebowale ◽  
Victor R. Gordeuk ◽  
Sergei Nekhai ◽  
James G. Taylor

Background: Blood transfusion is a common therapy for sickle cell disease (SCD). Although, highly effective, a major limitation is development of alloantibodies to minor blood group antigens on donor red cells. Alloimmunization has a prevalence of 2-5% for transfusions in the general population, but it is significantly higher in SCD. Risk factors for alloimmunization have been poorly characterized, although number of lifetime transfusions is an important risk factor. Alloimmunization has been clinically observed in children with a prevalence of about 7%. With development of each antibody, blood donor matching becomes increasingly difficult and expensive with an increased risk for transfusion reactions and diminished availability of compatible red cell units for treatment of SCD. The ability to identify risk factors for developing alloantibodies would be beneficial for clinicians. To identify markers for alloimmunization in SCD, we have analyzed children and adults who developed this complication. Methods: We analyzed The Pulmonary Hypertension and Hypoxic Response in Sickle Cell Disease (PUSH) study, which enrolled n=468 pediatric and n=59 adult SCD subjects. In both children and adults, alloimmunization cases were defined as a history of at least 1 alloantibody. Controls in both cohorts were defined as subjects with no history of alloantibodies and receipt of more than 10 lifetime red cell transfusions. All others within the study who did not meet these criteria were assigned to a third comparison group. To identify differences between cases, controls and all others, we performed univariate analyses (using ANOVA or Kruskal Wallace where appropriate) for clinical parameters and laboratories. Case control comparisons were also performed for selected variables and plasma levels for 11 cytokines. Results were further analyzed using regression modeling. Results: The overall prevalence of alloimmunization was 7.3% among children (34/468 subjects; median age 12, range 3-20 years) compared to 28.8% in adults (17/59 subjects; median age 37, range 18-73 years). When only considering those with >10 lifetime transfusions, the prevalence was considerably higher at 29.3% and 54.8% in children and adults, respectively. At the same time, 8 pediatric (23.5%) and 5 adult (29.4%) alloimmunization cases had received fewer than 10 transfusions. In a 3-way pediatric cohort comparison (cases, controls and all others), risk factors associated with alloimmunization included SS genotype, older age and markers of more severe disease (higher ferritin, WBCs, platelets and total bilirubin). Comparison of cases to controls showed alkaline phosphatase (P=0.05) was significantly lower in cases, whereas AST (P=0.02) was significantly higher even with adjustment for age. Levels of plasma cytokines MCP-1 (P=0.01) and IFNgamma (P=0.08) were lower in cases from a subset of the pediatric cohort. In adults, only 4/59 (6.8%) subjects had never received a lifetime transfusion (all non-SS). In the adult 3-way comparisons, only SS genotype and higher ferritin were associated with alloimmunization. The adult case control analysis showed higher absolute monocyte count (P=0.02), absolute eosinophil count (P=0.04) and absolute basophil count (P=0.008) in association with alloimmunization cases. In addition, alkaline phosphatase was again significantly lower among cases (P=0.02) as seen in the pediatric cohort. There were no significant differences in cytokine levels among adults. Conclusions: When considering only transfused SCD patients, the prevalence of alloimmunization is higher than 30%. As seen in prior studies, higher lifetime red cell transfusions are an important risk factor especially among adults where most patients have received transfusions. Children who develop alloantibodies appear to have laboratory markers of more severe disease, but this is not observed in adults. A novel association observed across both pediatric and adult subjects is a significantly lower serum alkaline phosphatase in those with alloantibodies. The results of this study suggest a need for improved tracking of red cell transfusion therapy in the US for SCD patients due to a high prevalence of alloimmunization. Further study is also needed to elucidate the significance of the alkaline phosphatase association. Disclosures Gordeuk: CSL Behring: Consultancy, Research Funding; Global Blood Therapeutics: Consultancy, Research Funding; Novartis: Consultancy; Ironwood: Research Funding; Imara: Research Funding.


2021 ◽  
Vol 9 (1) ◽  
pp. 262-267
Author(s):  
Tarig Osman Khalafallah Ahmed ◽  
Ekhlas Alrasheid Abu Elfadul ◽  
Ahmed A. Agab Eldour ◽  
Omer Ibrahim Abdallah Mohammed

Sickle cell disease (SCD) is an inherited blood disorder that affects red blood cells. The study was conducted in Elobied town during the period May 2011 to September 2011. The aim of this study is to detect the abnormalities of leucocytes among sickle cell anemic patients. 40 sickle cell anemic patients; age range between 8 months to 23 years. Blood sample was taken for all patients and the laboratory investigation were performed using automated estimation for: hemoglobin (Hb), Packed cell volume (PCV), red cell count (RBCs), mean cell volume (MCV), mean cell hemoglobin (MCH), mean cell concentration (MCHC), and total white blood cells, comment on blood film using manual methods. The conclusion of this study there is increase in total white blood cells with shift to left in neutrophil precursor in sickle cell patients with complications ,the most immature cells are band form, myelocytes and metamyelocytes, and there also lymphocytosis and neutrophilia which has been increases in response to infections.


2016 ◽  
Vol 54 (1) ◽  
pp. 158-162 ◽  
Author(s):  
Matthew S. Karafin ◽  
Arun K. Singavi ◽  
Mehraboon S. Irani ◽  
Kathleen E. Puca ◽  
Lisa Baumann Kreuziger ◽  
...  

2007 ◽  
Vol 36 (3) ◽  
pp. 305-312 ◽  
Author(s):  
Ilknur Kozanoglu ◽  
Can Boga ◽  
Hakan Ozdogu ◽  
Nurzen Sezgin ◽  
Ebru Kizilkilic ◽  
...  

2018 ◽  
Vol 180 (4) ◽  
pp. 607-617 ◽  
Author(s):  
David C. Rees ◽  
Susan Robinson ◽  
Jo Howard

2020 ◽  
Vol 4 (2) ◽  
pp. 327-355 ◽  
Author(s):  
Stella T. Chou ◽  
Mouaz Alsawas ◽  
Ross M. Fasano ◽  
Joshua J. Field ◽  
Jeanne E. Hendrickson ◽  
...  

Background: Red cell transfusions remain a mainstay of therapy for patients with sickle cell disease (SCD), but pose significant clinical challenges. Guidance for specific indications and administration of transfusion, as well as screening, prevention, and management of alloimmunization, delayed hemolytic transfusion reactions (DHTRs), and iron overload may improve outcomes. Objective: Our objective was to develop evidence-based guidelines to support patients, clinicians, and other healthcare professionals in their decisions about transfusion support for SCD and the management of transfusion-related complications. Methods: The American Society of Hematology formed a multidisciplinary panel that was balanced to minimize bias from conflicts of interest and that included a patient representative. The panel prioritized clinical questions and outcomes. The Mayo Clinic Evidence-Based Practice Research Program supported the guideline development process. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach was used to form recommendations, which were subject to public comment. Results: The panel developed 10 recommendations focused on red cell antigen typing and matching, indications, and mode of administration (simple vs red cell exchange), as well as screening, prevention, and management of alloimmunization, DHTRs, and iron overload. Conclusions: The majority of panel recommendations were conditional due to the paucity of direct, high-certainty evidence for outcomes of interest. Research priorities were identified, including prospective studies to understand the role of serologic vs genotypic red cell matching, the mechanism of HTRs resulting from specific alloantigens to inform therapy, the role and timing of regular transfusions during pregnancy for women, and the optimal treatment of transfusional iron overload in SCD.


2017 ◽  
Vol 9 (1) ◽  
pp. e2017013 ◽  
Author(s):  
Anil Pathare ◽  
Salam Alkindi

Background: Blood transfusion is an integral part of the supportive care for patients with sickle cell anemia and thalassaemia. The hazard of red cell alloimmunization, however, is one of the main complications of this therapy. Objectives: The aim of this study was to evaluate the incidence of red cell alloimmunization in Omani patients with sickle cell anemia and thalassaemia. Methods: This study included 262 patients whose historical transfusion records were available. One hundred and twenty-nine patients with thalassaemia who were attending the day care unit for regular transfusions, and 133 sickle cell anemia patients admitted at our hospital were included in this study. The Diamed gel system was used for the screening and identification of atypical antibodies. Results: The rate of alloimmunization in sickle cell anemia patients was 31% (n=41), whereas in thalassaemia patients it was 20% (n=26). Antibodies to E, e, C, c, D, K, S, Fyª, Kpª, Jkª and Cw were observed. Among the two groups, 8 developed nonspecific antibodies, and 12 developed more than one antibody; however, 85% of patients were also immunized to Rh and Kell antigens. Conclusions: Red cell transfusions are associated with a significant risk of alloimmunization. It is, therefore, imperative to perform an initial extended red cell phenotyping for both donors and recipients, and carefully select ABO, Rh and Kell matched donors.


Sign in / Sign up

Export Citation Format

Share Document