scholarly journals Chaotic activation of developmental signalling pathways drives idiopathic pulmonary fibrosis

2020 ◽  
Vol 29 (158) ◽  
pp. 190140
Author(s):  
Antoine Froidure ◽  
Emmeline Marchal-Duval ◽  
Meline Homps-Legrand ◽  
Mada Ghanem ◽  
Aurélien Justet ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is characterised by an important remodelling of lung parenchyma. Current evidence indicates that the disease is triggered by alveolar epithelium activation following chronic lung injury, resulting in alveolar epithelial type 2 cell hyperplasia and bronchiolisation of alveoli. Signals are then delivered to fibroblasts that undergo differentiation into myofibroblasts. These changes in lung architecture require the activation of developmental pathways that are important regulators of cell transformation, growth and migration. Among others, aberrant expression of profibrotic Wnt-β-catenin, transforming growth factor-β and Sonic hedgehog pathways in IPF fibroblasts has been assessed. In the present review, we will discuss the transcriptional integration of these different pathways during IPF as compared with lung early ontogeny. We will challenge the hypothesis that aberrant transcriptional integration of these pathways might be under the control of a chaotic dynamic, meaning that a small change in baseline conditions could be sufficient to trigger fibrosis rather than repair in a chronically injured lung. Finally, we will discuss some potential opportunities for treatment, either by suppressing deleterious mechanisms or by enhancing the expression of pathways involved in lung repair. Whether developmental mechanisms are involved in repair processes induced by stem cell therapy will also be discussed.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Alison E. John ◽  
Rebecca H. Graves ◽  
K. Tao Pun ◽  
Giovanni Vitulli ◽  
Ellen J. Forty ◽  
...  

Abstract The αvβ6 integrin plays a key role in the activation of transforming growth factor-β (TGFβ), a pro-fibrotic mediator that is pivotal to the development of idiopathic pulmonary fibrosis (IPF). We identified a selective small molecule αvβ6 RGD-mimetic, GSK3008348, and profiled it in a range of disease relevant pre-clinical systems. To understand the relationship between target engagement and inhibition of fibrosis, we measured pharmacodynamic and disease-related end points. Here, we report, GSK3008348 binds to αvβ6 with high affinity in human IPF lung and reduces downstream pro-fibrotic TGFβ signaling to normal levels. In human lung epithelial cells, GSK3008348 induces rapid internalization and lysosomal degradation of the αvβ6 integrin. In the murine bleomycin-induced lung fibrosis model, GSK3008348 engages αvβ6, induces prolonged inhibition of TGFβ signaling and reduces lung collagen deposition and serum C3M, a marker of IPF disease progression. These studies highlight the potential of inhaled GSK3008348 as an anti-fibrotic therapy.


2018 ◽  
Vol 132 (14) ◽  
pp. 1565-1580 ◽  
Author(s):  
Yasunori Enomoto ◽  
Sayomi Matsushima ◽  
Kiyoshi Shibata ◽  
Yoichiro Aoshima ◽  
Haruna Yagi ◽  
...  

Although differentiation of lung fibroblasts into α-smooth muscle actin (αSMA)-positive myofibroblasts is important in the progression of idiopathic pulmonary fibrosis (IPF), few biomarkers reflecting the fibrotic process have been discovered. We performed microarray analyses between FACS-sorted steady-state fibroblasts (lineage (CD45, TER-119, CD324, CD31, LYVE-1, and CD146)-negative and PDGFRα-positive cells) from untreated mouse lungs and myofibroblasts (lineage-negative, Sca-1-negative, and CD49e-positive cells) from bleomycin-treated mouse lungs. Amongst several genes up-regulated in the FACS-sorted myofibroblasts, we focussed on Ltbp2, the gene encoding latent transforming growth factor-β (TGF-β) binding protein-2 (LTBP2), because of the signal similarity to Acta2, which encodes αSMA, in the clustering analysis. The up-regulation was reproduced at the mRNA and protein levels in human lung myofibroblasts induced by TGF-β1. LTBP2 staining in IPF lungs was broadly positive in the fibrotic interstitium, mainly as an extracellular matrix (ECM) protein; however, some of the αSMA-positive myofibroblasts were also stained. Serum LTBP2 concentrations, evaluated using ELISA, in IPF patients were significantly higher than those in healthy volunteers (mean: 21.4 compared with 12.4 ng/ml) and showed a negative correlation with % predicted forced vital capacity (r = −0.369). The Cox hazard model demonstrated that serum LTBP2 could predict the prognosis of IPF patients (hazard ratio for death by respiratory events: 1.040, 95% confidence interval: 1.026–1.054), which was validated using the bootstrap method with 1000-fold replication. LTBP2 is a potential prognostic blood biomarker that may reflect the level of differentiation of lung fibroblasts into myofibroblasts in IPF.


2019 ◽  
Vol 317 (4) ◽  
pp. L510-L521 ◽  
Author(s):  
Yingze Zhang ◽  
Mao Jiang ◽  
Mehdi Nouraie ◽  
Mark G. Roth ◽  
Tracy Tabib ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is the most common and devastating of the interstitial lung diseases. Epithelial dysfunction is thought to play a prominent role in disease pathology, and we sought to characterize secreted signals that may contribute to disease pathology. Transcriptional profiling of senescent type II alveolar epithelial cells from mice with epithelial-specific telomere dysfunction identified the transforming growth factor-β family member, growth and differentiation factor 15 ( Gdf15), as the most significantly upregulated secreted protein. Gdf15 expression is induced in response to telomere dysfunction and bleomycin challenge in mice. Gdf15 mRNA is expressed by lung epithelial cells, and protein can be detected in peripheral blood and bronchoalveolar lavage following bleomycin challenge in mice. In patients with IPF, GDF15 mRNA expression in lung tissue is significantly increased and correlates with pulmonary function. Single-cell RNA sequencing of human lungs identifies epithelial cells as the primary source of GDF15, and circulating concentrations of GDF15 are markedly elevated and correlate with disease severity and survival in multiple independent cohorts. Our findings suggest that GDF15 is an epithelial-derived secreted protein that may be a useful biomarker of epithelial stress and identifies IPF patients with poor outcomes.


2012 ◽  
Vol 303 (12) ◽  
pp. L1046-L1056 ◽  
Author(s):  
Payal K. Naik ◽  
Paul D. Bozyk ◽  
J. Kelley Bentley ◽  
Antonia P. Popova ◽  
Carolyn M. Birch ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease without effective therapeutics. Periostin has been reported to be elevated in IPF patients relative to controls, but its sources and mechanisms of action remain unclear. We confirm excess periostin in lungs of IPF patients and show that IPF fibroblasts produce periostin. Blood was obtained from 54 IPF patients (all but 1 with 48 wk of follow-up). We show that periostin levels predict clinical progression at 48 wk (hazard ratio = 1.47, 95% confidence interval = 1.03–2.10, P < 0.05). Monocytes and fibrocytes are sources of periostin in circulation in IPF patients. Previous studies suggest that periostin may regulate the inflammatory phase of bleomycin-induced lung injury, but periostin effects during the fibroproliferative phase of the disease are unknown. Wild-type and periostin-deficient (periostin−/−) mice were anesthetized and challenged with bleomycin. Wild-type mice were injected with bleomycin and then treated with OC-20 Ab (which blocks periostin and integrin interactions) or control Ab during the fibroproliferative phase of disease, and fibrosis and survival were assessed. Periostin expression was upregulated quickly after treatment with bleomycin and remained elevated. Periostin−/− mice were protected from bleomycin-induced fibrosis. Instillation of OC-20 during the fibroproliferative phase improved survival and limited collagen deposition. Chimeric mouse studies suggest that hematopoietic and structural sources of periostin contribute to lung fibrogenesis. Periostin was upregulated by transforming growth factor-β in lung mesenchymal cells, and periostin promoted extracellular matrix deposition, mesenchymal cell proliferation, and wound closure. Thus periostin plays a vital role in late stages of pulmonary fibrosis and is a potential biomarker for disease progression and a target for therapeutic intervention.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Martin L. Decaris ◽  
Johanna R. Schaub ◽  
Chun Chen ◽  
Jacob Cha ◽  
Gail G. Lee ◽  
...  

Abstract Rationale αv integrins, key regulators of transforming growth factor-β activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvβ6) and fibroblasts (αvβ1) in fibrotic lungs. Objectives We evaluated multiple αv integrin inhibition strategies to assess which most effectively reduced fibrogenesis in explanted lung tissue from patients with idiopathic pulmonary fibrosis. Methods Selective αvβ6 and αvβ1, dual αvβ6/αvβ1, and multi-αv integrin inhibitors were characterized for potency, selectivity, and functional activity by ligand binding, cell adhesion, and transforming growth factor-β cell activation assays. Precision-cut lung slices generated from lung explants from patients with idiopathic pulmonary fibrosis or bleomycin-challenged mouse lungs were treated with integrin inhibitors or standard-of-care drugs (nintedanib or pirfenidone) and analyzed for changes in fibrotic gene expression or TGF-β signaling. Bleomycin-challenged mice treated with dual αvβ6/αvβ1 integrin inhibitor, PLN-74809, were assessed for changes in pulmonary collagen deposition and Smad3 phosphorylation. Measurements and main results Inhibition of integrins αvβ6 and αvβ1 was additive in reducing type I collagen gene expression in explanted lung tissue slices from patients with idiopathic pulmonary fibrosis. These data were replicated in fibrotic mouse lung tissue, with no added benefit observed from inhibition of additional αv integrins. Antifibrotic efficacy of dual αvβ6/αvβ1 integrin inhibitor PLN-74809 was confirmed in vivo, where dose-dependent inhibition of pulmonary Smad3 phosphorylation and collagen deposition was observed. PLN-74809 also, more potently, reduced collagen gene expression in fibrotic human and mouse lung slices than clinically relevant concentrations of nintedanib or pirfenidone. Conclusions In the fibrotic lung, dual inhibition of integrins αvβ6 and αvβ1 offers the optimal approach for blocking fibrogenesis resulting from integrin-mediated activation of transforming growth factor-β.


Sign in / Sign up

Export Citation Format

Share Document