scholarly journals Artificial intelligence in pulmonary medicine: computer vision, predictive model and COVID-19

2020 ◽  
Vol 29 (157) ◽  
pp. 200181
Author(s):  
Danai Khemasuwan ◽  
Jeffrey S. Sorensen ◽  
Henri G. Colt

Artificial intelligence (AI) is transforming healthcare delivery. The digital revolution in medicine and healthcare information is prompting a staggering growth of data intertwined with elements from many digital sources such as genomics, medical imaging and electronic health records. Such massive growth has sparked the development of an increasing number of AI-based applications that can be deployed in clinical practice. Pulmonary specialists who are familiar with the principles of AI and its applications will be empowered and prepared to seize future practice and research opportunities. The goal of this review is to provide pulmonary specialists and other readers with information pertinent to the use of AI in pulmonary medicine. First, we describe the concept of AI and some of the requisites of machine learning and deep learning. Next, we review some of the literature relevant to the use of computer vision in medical imaging, predictive modelling with machine learning, and the use of AI for battling the novel severe acute respiratory syndrome-coronavirus-2 pandemic. We close our review with a discussion of limitations and challenges pertaining to the further incorporation of AI into clinical pulmonary practice.

Encyclopedia ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 220-239
Author(s):  
Sarkar Siddique ◽  
James C. L. Chow

Machine learning (ML) is a study of computer algorithms for automation through experience. ML is a subset of artificial intelligence (AI) that develops computer systems, which are able to perform tasks generally having need of human intelligence. While healthcare communication is important in order to tactfully translate and disseminate information to support and educate patients and public, ML is proven applicable in healthcare with the ability for complex dialogue management and conversational flexibility. In this topical review, we will highlight how the application of ML/AI in healthcare communication is able to benefit humans. This includes chatbots for the COVID-19 health education, cancer therapy, and medical imaging.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Andre Esteva ◽  
Katherine Chou ◽  
Serena Yeung ◽  
Nikhil Naik ◽  
Ali Madani ◽  
...  

AbstractA decade of unprecedented progress in artificial intelligence (AI) has demonstrated the potential for many fields—including medicine—to benefit from the insights that AI techniques can extract from data. Here we survey recent progress in the development of modern computer vision techniques—powered by deep learning—for medical applications, focusing on medical imaging, medical video, and clinical deployment. We start by briefly summarizing a decade of progress in convolutional neural networks, including the vision tasks they enable, in the context of healthcare. Next, we discuss several example medical imaging applications that stand to benefit—including cardiology, pathology, dermatology, ophthalmology–and propose new avenues for continued work. We then expand into general medical video, highlighting ways in which clinical workflows can integrate computer vision to enhance care. Finally, we discuss the challenges and hurdles required for real-world clinical deployment of these technologies.


Author(s):  
Satya Kiranmai Tadepalli ◽  
P.V. Lakshmi

Infertility is the combination of factors that prevent pregnancy. It involves a lot of care and expertise while selecting the best embryo to lead to a successful pregnancy. Assistive reproductive technology (ART) helps to solve this issue. In vitro fertilization (IVF) is one of the methods of ART which is very popular. Artificial intelligence will have digital revolution and manifold advances in the field of reproductive medicine and will eventually provide immense benefits to infertile patients. The main aim of this article is to focus on the methods that can predict the accuracy of pregnancy without human intervention. It provides successful studies conducted by using machine learning techniques. This easily enables doctors to understand the behavior of the attributes which are suitable for the treatment. Blastocyst images can be deployed for the detection and prediction of the best embryo which has the maximum chance of a successful pregnancy. This pioneering work gives one a view into how this field could benefit the future generation.


2020 ◽  
pp. 1-14
Author(s):  
Zhen Huang ◽  
Qiang Li ◽  
Ju Lu ◽  
Junlin Feng ◽  
Jiajia Hu ◽  
...  

<b><i>Background:</i></b> Application and development of the artificial intelligence technology have generated a profound impact in the field of medical imaging. It helps medical personnel to make an early and more accurate diagnosis. Recently, the deep convolution neural network is emerging as a principal machine learning method in computer vision and has received significant attention in medical imaging. <b><i>Key Message:</i></b> In this paper, we will review recent advances in artificial intelligence, machine learning, and deep convolution neural network, focusing on their applications in medical image processing. To illustrate with a concrete example, we discuss in detail the architecture of a convolution neural network through visualization to help understand its internal working mechanism. <b><i>Summary:</i></b> This review discusses several open questions, current trends, and critical challenges faced by medical image processing and artificial intelligence technology.


EDIS ◽  
2018 ◽  
Vol 2018 (6) ◽  
Author(s):  
Yiannis Ampatzidis

Technological advances in computer vision, mechatronics, artificial intelligence and machine learning have enabled the development and implementation of remote sensing technologies for plant/weed/pest/disease identification and management. They provide a unique opportunity for developing intelligent agricultural systems for precision applications. Herein, the Artificial Intelligence (AI) and Machine Learning concepts are described, and several examples are presented to demonstrate the application of the AI in agriculture. Available on EDIS at: https://edis.ifas.ufl.edu/ae529


2020 ◽  
Vol 23 (6) ◽  
pp. 1172-1191
Author(s):  
Artem Aleksandrovich Elizarov ◽  
Evgenii Viktorovich Razinkov

Recently, such a direction of machine learning as reinforcement learning has been actively developing. As a consequence, attempts are being made to use reinforcement learning for solving computer vision problems, in particular for solving the problem of image classification. The tasks of computer vision are currently one of the most urgent tasks of artificial intelligence. The article proposes a method for image classification in the form of a deep neural network using reinforcement learning. The idea of ​​the developed method comes down to solving the problem of a contextual multi-armed bandit using various strategies for achieving a compromise between exploitation and research and reinforcement learning algorithms. Strategies such as -greedy, -softmax, -decay-softmax, and the UCB1 method, and reinforcement learning algorithms such as DQN, REINFORCE, and A2C are considered. The analysis of the influence of various parameters on the efficiency of the method is carried out, and options for further development of the method are proposed.


Author(s):  
Mathias-Felipe de-Lima-Santos ◽  
Wilson Ceron

In recent years, news media has been greatly disrupted by the potential of technologically driven approaches in the creation, production, and distribution of news products and services. Artificial intelligence (AI) has emerged from the realm of science fiction and has become a very real tool that can aid society in addressing many issues, including the challenges faced by the news industry. The ubiquity of computing has become apparent and has demonstrated the different approaches that can be achieved using AI. We analyzed the news industry&rsquo;s AI adoption based on the seven subfields of AI: (i) machine learning; (ii) computer vision (CV); (iii) speech recognition; (iv) natural language processing (NLP); (v) planning, scheduling, and optimization; (vi) expert systems; and (vii) robotics. Our findings suggest that three subfields are being developed more in the news media: machine learning, computer vision, as well as planning, scheduling, and optimization. Other areas have not been fully deployed in the journalistic field. Most AI news projects rely on funds from tech companies such as Google. This limits AI&rsquo;s potential to a small number of players in the news industry. We make conclusions by providing examples of how these subfields are being developed in journalism and present an agenda for future research.


2021 ◽  
Vol 4 ◽  
Author(s):  
Jay Carriere ◽  
Hareem Shafi ◽  
Katelyn Brehon ◽  
Kiran Pohar Manhas ◽  
Katie Churchill ◽  
...  

The COVID-19 pandemic has profoundly affected healthcare systems and healthcare delivery worldwide. Policy makers are utilizing social distancing and isolation policies to reduce the risk of transmission and spread of COVID-19, while the research, development, and testing of antiviral treatments and vaccines are ongoing. As part of these isolation policies, in-person healthcare delivery has been reduced, or eliminated, to avoid the risk of COVID-19 infection in high-risk and vulnerable populations, particularly those with comorbidities. Clinicians, occupational therapists, and physiotherapists have traditionally relied on in-person diagnosis and treatment of acute and chronic musculoskeletal (MSK) and neurological conditions and illnesses. The assessment and rehabilitation of persons with acute and chronic conditions has, therefore, been particularly impacted during the pandemic. This article presents a perspective on how Artificial Intelligence and Machine Learning (AI/ML) technologies, such as Natural Language Processing (NLP), can be used to assist with assessment and rehabilitation for acute and chronic conditions.


Author(s):  
S. Sasikala ◽  
S. J. Subhashini ◽  
P. Alli ◽  
J. Jane Rubel Angelina

Machine learning is a technique of parsing data, learning from that data, and then applying what has been learned to make informed decisions. Deep learning is actually a subset of machine learning. It technically is machine learning and functions in the same way, but it has different capabilities. The main difference between deep and machine learning is, machine learning models become well progressively, but the model still needs some guidance. If a machine learning model returns an inaccurate prediction, then the programmer needs to fix that problem explicitly, but in the case of deep learning, the model does it by itself. Automatic car driving system is a good example of deep learning. On other hand, Artificial Intelligence is a different thing from machine learning and deep learning. Deep learning and machine learning both are the subsets of AI.


Sign in / Sign up

Export Citation Format

Share Document