scholarly journals Case Report: Utilizing AI and NLP to Assist with Healthcare and Rehabilitation During the COVID-19 Pandemic

2021 ◽  
Vol 4 ◽  
Author(s):  
Jay Carriere ◽  
Hareem Shafi ◽  
Katelyn Brehon ◽  
Kiran Pohar Manhas ◽  
Katie Churchill ◽  
...  

The COVID-19 pandemic has profoundly affected healthcare systems and healthcare delivery worldwide. Policy makers are utilizing social distancing and isolation policies to reduce the risk of transmission and spread of COVID-19, while the research, development, and testing of antiviral treatments and vaccines are ongoing. As part of these isolation policies, in-person healthcare delivery has been reduced, or eliminated, to avoid the risk of COVID-19 infection in high-risk and vulnerable populations, particularly those with comorbidities. Clinicians, occupational therapists, and physiotherapists have traditionally relied on in-person diagnosis and treatment of acute and chronic musculoskeletal (MSK) and neurological conditions and illnesses. The assessment and rehabilitation of persons with acute and chronic conditions has, therefore, been particularly impacted during the pandemic. This article presents a perspective on how Artificial Intelligence and Machine Learning (AI/ML) technologies, such as Natural Language Processing (NLP), can be used to assist with assessment and rehabilitation for acute and chronic conditions.

2020 ◽  
pp. 002224292095734
Author(s):  
Chiara Longoni ◽  
Luca Cian

Rapid development and adoption of AI, machine learning, and natural language processing applications challenge managers and policy makers to harness these transformative technologies. In this context, the authors provide evidence of a novel “word-of-machine” effect, the phenomenon by which utilitarian/hedonic attribute trade-offs determine preference for, or resistance to, AI-based recommendations compared with traditional word of mouth, or human-based recommendations. The word-of-machine effect stems from a lay belief that AI recommenders are more competent than human recommenders in the utilitarian realm and less competent than human recommenders in the hedonic realm. As a consequence, importance or salience of utilitarian attributes determine preference for AI recommenders over human ones, and importance or salience of hedonic attributes determine resistance to AI recommenders over human ones (Studies 1–4). The word-of machine effect is robust to attribute complexity, number of options considered, and transaction costs. The word-of-machine effect reverses for utilitarian goals if a recommendation needs matching to a person’s unique preferences (Study 5) and is eliminated in the case of human–AI hybrid decision making (i.e., augmented rather than artificial intelligence; Study 6). An intervention based on the consider-the-opposite protocol attenuates the word-of-machine effect (Studies 7a–b).


2020 ◽  
Vol 114 ◽  
pp. 242-245
Author(s):  
Jootaek Lee

The term, Artificial Intelligence (AI), has changed since it was first coined by John MacCarthy in 1956. AI, believed to have been created with Kurt Gödel's unprovable computational statements in 1931, is now called deep learning or machine learning. AI is defined as a computer machine with the ability to make predictions about the future and solve complex tasks, using algorithms. The AI algorithms are enhanced and become effective with big data capturing the present and the past while still necessarily reflecting human biases into models and equations. AI is also capable of making choices like humans, mirroring human reasoning. AI can help robots to efficiently repeat the same labor intensive procedures in factories and can analyze historic and present data efficiently through deep learning, natural language processing, and anomaly detection. Thus, AI covers a spectrum of augmented intelligence relating to prediction, autonomous intelligence relating to decision making, automated intelligence for labor robots, and assisted intelligence for data analysis.


2021 ◽  
pp. 002073142110174
Author(s):  
Md Mijanur Rahman ◽  
Fatema Khatun ◽  
Ashik Uzzaman ◽  
Sadia Islam Sami ◽  
Md Al-Amin Bhuiyan ◽  
...  

The novel coronavirus disease (COVID-19) has spread over 219 countries of the globe as a pandemic, creating alarming impacts on health care, socioeconomic environments, and international relationships. The principal objective of the study is to provide the current technological aspects of artificial intelligence (AI) and other relevant technologies and their implications for confronting COVID-19 and preventing the pandemic’s dreadful effects. This article presents AI approaches that have significant contributions in the fields of health care, then highlights and categorizes their applications in confronting COVID-19, such as detection and diagnosis, data analysis and treatment procedures, research and drug development, social control and services, and the prediction of outbreaks. The study addresses the link between the technologies and the epidemics as well as the potential impacts of technology in health care with the introduction of machine learning and natural language processing tools. It is expected that this comprehensive study will support researchers in modeling health care systems and drive further studies in advanced technologies. Finally, we propose future directions in research and conclude that persuasive AI strategies, probabilistic models, and supervised learning are required to tackle future pandemic challenges.


2021 ◽  
pp. medethics-2020-107095
Author(s):  
Charalampia (Xaroula) Kerasidou ◽  
Angeliki Kerasidou ◽  
Monika Buscher ◽  
Stephen Wilkinson

Artificial intelligence (AI) is changing healthcare and the practice of medicine as data-driven science and machine-learning technologies, in particular, are contributing to a variety of medical and clinical tasks. Such advancements have also raised many questions, especially about public trust. As a response to these concerns there has been a concentrated effort from public bodies, policy-makers and technology companies leading the way in AI to address what is identified as a "public trust deficit". This paper argues that a focus on trust as the basis upon which a relationship between this new technology and the public is built is, at best, ineffective, at worst, inappropriate or even dangerous, as it diverts attention from what is actually needed to actively warrant trust. Instead of agonising about how to facilitate trust, a type of relationship which can leave those trusting vulnerable and exposed, we argue that efforts should be focused on the difficult and dynamic process of ensuring reliance underwritten by strong legal and regulatory frameworks. From there, trust could emerge but not merely as a means to an end. Instead, as something to work in practice towards; that is, the deserved result of an ongoing ethical relationship where there is the appropriate, enforceable and reliable regulatory infrastructure in place for problems, challenges and power asymmetries to be continuously accounted for and appropriately redressed.


2021 ◽  
Vol 9 (1) ◽  
pp. 01-10
Author(s):  
Natisha Dukhi ◽  
Ronel Sewpaul ◽  
Machoene Derrick Sekgala ◽  
Olushina Olawale Awe

Anemia prevalence, especially among children and adolescents, is a serious public health burden in the BRICS countries. This article gives an overview of the current anaemia status in children and adolescents in three BRICS countries, as part of a study that utilizes an artificial intelligence approach for analyzing anaemia prevalence in children and adolescents in South Africa, India and Russia. It posits that the use of machine learning in this area of health research is still novel. The weightage assessment of the crosslink between anaemia risk indicators using a machine learning approach will assist policy makers in identifying the areas of priority to intervene in the BRICS participating countries. Health interventions utilizing artificial intelligence and more specifically, machine learning techniques, remains nascent in LMICs but could lead to improved health outcomes.


Author(s):  
Shatakshi Singh ◽  
Kanika Gautam ◽  
Prachi Singhal ◽  
Sunil Kumar Jangir ◽  
Manish Kumar

The recent development in artificial intelligence is quite astounding in this decade. Especially, machine learning is one of the core subareas of AI. Also, ML field is an incessantly growing along with evolution and becomes a rise in its demand and importance. It transmogrified the way data is extracted, analyzed, and interpreted. Computers are trained to get in a self-training mode so that when new data is fed they can learn, grow, change, and develop themselves without explicit programming. It helps to make useful predictions that can guide better decisions in a real-life situation without human interference. Selection of ML tool is always a challenging task, since choosing an appropriate tool can end up saving time as well as making it faster and easier to provide any solution. This chapter provides a classification of various machine learning tools on the following aspects: for non-programmers, for model deployment, for Computer vision, natural language processing, and audio for reinforcement learning and data mining.


Author(s):  
Irene Li ◽  
Alexander R. Fabbri ◽  
Robert R. Tung ◽  
Dragomir R. Radev

Recent years have witnessed the rising popularity of Natural Language Processing (NLP) and related fields such as Artificial Intelligence (AI) and Machine Learning (ML). Many online courses and resources are available even for those without a strong background in the field. Often the student is curious about a specific topic but does not quite know where to begin studying. To answer the question of “what should one learn first,”we apply an embedding-based method to learn prerequisite relations for course concepts in the domain of NLP. We introduce LectureBank, a dataset containing 1,352 English lecture files collected from university courses which are each classified according to an existing taxonomy as well as 208 manually-labeled prerequisite relation topics, which is publicly available 1. The dataset will be useful for educational purposes such as lecture preparation and organization as well as applications such as reading list generation. Additionally, we experiment with neural graph-based networks and non-neural classifiers to learn these prerequisite relations from our dataset.


2019 ◽  
Vol 33 (1) ◽  
pp. 10-18 ◽  
Author(s):  
Mei Chen ◽  
Michel Decary

Artificial Intelligence (AI) is evolving rapidly in healthcare, and various AI applications have been developed to solve some of the most pressing problems that health organizations currently face. It is crucial for health leaders to understand the state of AI technologies and the ways that such technologies can be used to improve the efficiency, safety, and access of health services, achieving value-based care. This article provides a guide to understand the fundamentals of AI technologies (ie, machine learning, natural language processing, and AI voice assistants) as well as their proper use in healthcare. It also provides practical recommendations to help decision-makers develop an AI strategy that can support their digital healthcare transformation.


Author(s):  
Massimiliano Greco ◽  
Pier F. Caruso ◽  
Maurizio Cecconi

AbstractThe diffusion of electronic health records collecting large amount of clinical, monitoring, and laboratory data produced by intensive care units (ICUs) is the natural terrain for the application of artificial intelligence (AI). AI has a broad definition, encompassing computer vision, natural language processing, and machine learning, with the latter being more commonly employed in the ICUs. Machine learning may be divided in supervised learning models (i.e., support vector machine [SVM] and random forest), unsupervised models (i.e., neural networks [NN]), and reinforcement learning. Supervised models require labeled data that is data mapped by human judgment against predefined categories. Unsupervised models, on the contrary, can be used to obtain reliable predictions even without labeled data. Machine learning models have been used in ICU to predict pathologies such as acute kidney injury, detect symptoms, including delirium, and propose therapeutic actions (vasopressors and fluids in sepsis). In the future, AI will be increasingly used in ICU, due to the increasing quality and quantity of available data. Accordingly, the ICU team will benefit from models with high accuracy that will be used for both research purposes and clinical practice. These models will be also the foundation of future decision support system (DSS), which will help the ICU team to visualize and analyze huge amounts of information. We plea for the creation of a standardization of a core group of data between different electronic health record systems, using a common dictionary for data labeling, which could greatly simplify sharing and merging of data from different centers.


Author(s):  
Gleb Danilov ◽  
Alexandra Kosyrkova ◽  
Maria Shults ◽  
Semen Melchenko ◽  
Tatyana Tsukanova ◽  
...  

Unstructured medical text labeling technologies are expected to be highly demanded since the interest in artificial intelligence and natural language processing arises in the medical domain. Our study aimed to assess the agreement between experts who judged on the fact of pulmonary embolism (PE) in neurosurgical cases retrospectively based on electronic health records and assess the utility of the machine learning approach to automate this process. We observed a moderate agreement between 3 independent raters on PE detection (Light’s kappa = 0.568, p = 0). Labeling sentences with the method we proposed earlier might improve the machine learning results (accuracy = 0.97, ROC AUC = 0.98) even in those cases that could not be agreed between 3 independent raters. Medical text labeling techniques might be more efficient when strict rules and semi-automated approaches are implemented. Machine learning might be a good option for unstructured text labeling when the reliability of textual data is properly addressed. This project was supported by the RFBR grant 18-29-22085.


Sign in / Sign up

Export Citation Format

Share Document