scholarly journals Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP- and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription

2012 ◽  
Vol 12 (1) ◽  
pp. 125 ◽  
Author(s):  
Kenneth W Berendzen ◽  
Christoph Weiste ◽  
Dierk Wanke ◽  
Joachim Kilian ◽  
Klaus Harter ◽  
...  
Keyword(s):  
Development ◽  
1999 ◽  
Vol 126 (6) ◽  
pp. 1201-1210 ◽  
Author(s):  
G.F. Hewitt ◽  
B.S. Strunk ◽  
C. Margulies ◽  
T. Priputin ◽  
X.D. Wang ◽  
...  

Early developmental patterning of the Drosophila embryo is driven by the activities of a diverse set of maternally and zygotically derived transcription factors, including repressors encoded by gap genes such as Kruppel, knirps, giant and the mesoderm-specific snail. The mechanism of repression by gap transcription factors is not well understood at a molecular level. Initial characterization of these transcription factors suggests that they act as short-range repressors, interfering with the activity of enhancer or promoter elements 50 to 100 bp away. To better understand the molecular mechanism of short-range repression, we have investigated the properties of the Giant gap protein. We tested the ability of endogenous Giant to repress when bound close to the transcriptional initiation site and found that Giant effectively represses a heterologous promoter when binding sites are located at −55 bp with respect to the start of transcription. Consistent with its role as a short-range repressor, as the binding sites are moved to more distal locations, repression is diminished. Rather than exhibiting a sharp ‘step-function’ drop-off in activity, however, repression is progressively restricted to areas of highest Giant concentration. Less than a two-fold difference in Giant protein concentration is sufficient to determine a change in transcriptional status of a target gene. This effect demonstrates that Giant protein gradients can be differentially interpreted by target promoters, depending on the exact location of the Giant binding sites within the gene. Thus, in addition to binding site affinity and number, cis element positioning within a promoter can affect the response of a gene to a repressor gradient. We also demonstrate that a chimeric Gal4-Giant protein lacking the basic/zipper domain can specifically repress reporter genes, suggesting that the Giant effector domain is an autonomous repression domain.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3151-3160 ◽  
Author(s):  
Diana Catt ◽  
Shannon Hawkins ◽  
Ann Roman ◽  
Wen Luo ◽  
David G. Skalnik

CCAAT displacement protein (CDP) is a transcriptional repressor that restricts expression of the gp91phox gene to mature myeloid cells. CDP interacts with multiple sites within the −450 to +12 bp human gp91phox promoter, and down-regulation of CDP DNA-binding activity is required for induction of gp91phox transcription in mature phagocytes. Truncation of the gp91phox promoter to −102 to +12 bp removes 4 CDP-binding sites and reveals a promiscuous promoter activity that is active in some nonphagocytic cells. A cis-element at −90 bp is required for derepressed transcription and serves as a binding site for multiple transcriptional activators. We now report that this element also serves as a binding site for CDP. The affinity of CDP for this element is relatively weak compared with upstream CDP-binding sites within the promoter, consistent with the promiscuous transcriptional activity exhibited by the −102 to +12 bp gp91phox promoter fragment. Further analysis of the proximal promoter reveals an additional weak-affinity CDP-binding site centered at approximately −20 bp. Overexpression of cloned CDP represses the −102 to +12 bp gp91phox promoter, indicating that these proximal CDP-binding sites are functionally significant. The constellation of transcriptional activators and a repressor that interacts with the −90 bp cis-element is identical to that observed for a promoter element at −220 bp, reflecting the highly modular organization of the gp91phoxpromoter. These studies illustrate the complex interplay between transcriptional activators and a repressor that contribute to the myeloid-restricted expression of the gp91phox gene.


Development ◽  
2002 ◽  
Vol 129 (13) ◽  
pp. 3115-3126 ◽  
Author(s):  
Ron Galant ◽  
Christopher M. Walsh ◽  
Sean B. Carroll

Homeotic (Hox) genes regulate the identity of structures along the anterior-posterior axis of most animals. The low DNA-binding specificities of Hox proteins have raised the question of how these transcription factors selectively regulate target gene expression. The discovery that the Extradenticle (Exd)/Pbx and Homothorax (Hth)/Meis proteins act as cofactors for several Hox proteins has advanced the view that interactions with cofactors are critical to the target selectivity of Hox proteins. It is not clear, however, to what extent Hox proteins also regulate target genes in the absence of cofactors. In Drosophila melanogaster, the Hox protein Ultrabithorax (Ubx) promotes haltere development and suppresses wing development by selectively repressing many genes of the wing-patterning hierarchy, and this activity requires neither Exd nor Hth function. Here, we show that Ubx directly regulates a flight appendage-specific cis-regulatory element of the spalt (sal) gene. We find that multiple monomer Ubx-binding sites are required to completely repress this cis-element in the haltere, and that individual Ubx-binding sites are sufficient to mediate its partial repression. These results suggest that Hox proteins can directly regulate target genes in the absence of the cofactor Extradenticle. We propose that the regulation of some Hox target genes evolves via the accumulation of multiple Hox monomer binding sites. Furthermore, because the development and morphological diversity of the distal parts of most arthropod and vertebrate appendages involve Hox, but not Exd/Pbx or Hth/Meis proteins, this mode of target gene regulation appears to be important for distal appendage development and the evolution of appendage diversity.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 793-801
Author(s):  
Wilailak Pooma ◽  
Christos Gersos ◽  
Erich Grotewold

Abstract The understanding of control of gene regulation in higher eukaryotes relies heavily on results derived from non-in vivo studies, but rarely can the significance of these approximations be established in vivo. Here, we investigated the effect of Mutator and Spm insertions on the expression of the flavonoid biosynthetic gene a1, independently regulated by the transcription factors C1 and P. The a1-mum2 and a1-m2 alleles carry Mu1 and Spm insertions, respectively, in a cis-element (ARE) of unknown function located between the P- and C1-binding sites. We show that the insertions of Mu1 and Spm similarly influence the expression of a1 controlled by C1 or P. The P-controlled a1 expression in a1-m2 is Spm dependent, and the mutant phenotype of a1-mum2 is suppressed in the pericarp in the absence of the autonomous MuDR element. Footprints within the ARE affect the regulation of a1 by C1 and P differently, providing evidence that these factors control a1 expression using distinct cis-acting regulatory elements. Together, our findings contribute significantly to one of the best-described plant regulatory systems, while stressing the need to complement with in vivo experiments current approaches used for the study of control of gene expression.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3151-3160 ◽  
Author(s):  
Diana Catt ◽  
Shannon Hawkins ◽  
Ann Roman ◽  
Wen Luo ◽  
David G. Skalnik

Abstract CCAAT displacement protein (CDP) is a transcriptional repressor that restricts expression of the gp91phox gene to mature myeloid cells. CDP interacts with multiple sites within the −450 to +12 bp human gp91phox promoter, and down-regulation of CDP DNA-binding activity is required for induction of gp91phox transcription in mature phagocytes. Truncation of the gp91phox promoter to −102 to +12 bp removes 4 CDP-binding sites and reveals a promiscuous promoter activity that is active in some nonphagocytic cells. A cis-element at −90 bp is required for derepressed transcription and serves as a binding site for multiple transcriptional activators. We now report that this element also serves as a binding site for CDP. The affinity of CDP for this element is relatively weak compared with upstream CDP-binding sites within the promoter, consistent with the promiscuous transcriptional activity exhibited by the −102 to +12 bp gp91phox promoter fragment. Further analysis of the proximal promoter reveals an additional weak-affinity CDP-binding site centered at approximately −20 bp. Overexpression of cloned CDP represses the −102 to +12 bp gp91phox promoter, indicating that these proximal CDP-binding sites are functionally significant. The constellation of transcriptional activators and a repressor that interacts with the −90 bp cis-element is identical to that observed for a promoter element at −220 bp, reflecting the highly modular organization of the gp91phoxpromoter. These studies illustrate the complex interplay between transcriptional activators and a repressor that contribute to the myeloid-restricted expression of the gp91phox gene.


2001 ◽  
Vol 357 (1) ◽  
pp. 183-193 ◽  
Author(s):  
Lin ZHANG ◽  
Lan GE ◽  
Tai TRAN ◽  
Kurt STENN ◽  
Stephen M. PROUTY

Stearoyl-CoA desaturase is the rate-limiting enzyme in the production of mono-unsaturated fatty acids. We have recently cloned and characterized the human Scd cDNA and SCD (the stearoyl-CoA desaturase structural gene) on chromosome 10, as well as the non-transcribed pseudogene on chromosome 17. In order to further define SCD regulation and function, we have isolated and characterized the promoter of the structural gene. Screening of chromosome-10-specific libraries resulted in the isolation of 4.1kb of SCD sequence upstream of the translation start site. Binding sites for transcription factors critical for mouse Scd1 and Scd2 promoter activity, such as sterol-regulated-element-binding protein and nuclear factor Y, were present in the human SCD promoter (Scd is the mouse stearoyl-CoA desaturase gene). Deletion analysis in HaCaT keratinocytes identified a critical region for promoter activity between nts 496–609 upstream of the translation start site. Site-directed mutagenesis of binding sites in this region identified the CCAAT box as the critical cis-element for SCD promoter activity. An electrophoretic mobility-shift assay confirmed that this element binds nuclear proteins from HaCaT keratinocytes. The polyunsaturated-fatty-acid (PUFA) response element, previously identified in the promoters of mouse Scd1 and Scd2, was found to be conserved in the human SCD promoter, and contained the critical CCAAT cis-element. A minimal promoter construct including this region was responsive to fatty acids, with oleate and linoleate decreasing transcription and stearate increasing it. These studies indicate that CCAAT-box-binding proteins activate SCD transcription in cultured keratinocytes and that fatty acids modulate transcription, most likely through the conserved PUFA response element.


2021 ◽  
Author(s):  
Xiaomei Ke ◽  
Runshuai Zhang ◽  
Qiting Yao ◽  
Shi Duan ◽  
Wentao Hong ◽  
...  

Abstract Bcl6 and Prdm1 (Blimp1) are a pair of transcriptional factors that repressing each other in the mammals. Prdm1 represses the expression of bcl6 by binding a cis-element of bcl6 gene in mammals. The homologs of Bcl6 and Prdm1 have been identified in teleost fish. However, whether these two factors regulate each other by the same way in fish as that in the mammals is not clear. In this study, the regulation of bcl6aa by Prdm1 was investigated in medaka. The mRNA of bcl6aa has three variants (bcl6aaX1-X3) at the 5′-end by alternative splicing with different promoters detected by RT-PCR. The three variants can be detected in adult tissues and developing embryos of medaka. The predicted proteins of Bcl6aaX1-X3 may have modification such as acetylation, C-mannosylation, phosphorylation, and sumoylation in the N-terminuses with different half-lives and relative translation efficiencies. Prdm1a and prdm1b are expressed in the tissues and embryos where and when bcl6aa is expressed. The expression of prdm1a was high while the expression of bcl6aa was low, and vice versa, detected in the spleen after stimulation with LPS or polyI:C. In vitro reporter assay indicated that bcl6aa could be directly repressed by both Prdm1a and Prdm1b in a dosage-dependent manner. After mutation of the key base, G, of all predicted binding sites in the core promoter region of bcl6aa, the repression by Prdm1a and/or Prdm1b disappeared. The consensus binding site of Prdm1 in bcl6aa gene is GAAAA(T/G). These results indicate that both Prdm1a and Prdm1b directly repress the expression of bcl6aa by binding the consensus binding site where the 5′-G is critical in medaka fish.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
A. V. Somlyo ◽  
H. Shuman ◽  
A. P. Somlyo

Electron probe analysis of frozen dried cryosections of frog skeletal muscle, rabbit vascular smooth muscle and of isolated, hyperpermeab1 e rabbit cardiac myocytes has been used to determine the composition of the cytoplasm and organelles in the resting state as well as during contraction. The concentration of elements within the organelles reflects the permeabilities of the organelle membranes to the cytoplasmic ions as well as binding sites. The measurements of [Ca] in the sarcoplasmic reticulum (SR) and mitochondria at rest and during contraction, have direct bearing on their role as release and/or storage sites for Ca in situ.


Sign in / Sign up

Export Citation Format

Share Document