scholarly journals Investigation of anti-oxidative stress in vitro and water apparent diffusion coefficient in MRI on rat after spinal cord injury in vivo with Tithonia diversifolia ethanolic extracts treatment

Author(s):  
Chi-Long Juang ◽  
Fei Shish Yang ◽  
Ming Shuang Hsieh ◽  
Hu-Yi Tseng ◽  
Su-Chiu Chen ◽  
...  
2019 ◽  
Author(s):  
Zhanjun Ma ◽  
Yubao Lu ◽  
Fengguang Yang ◽  
Shaoping Li ◽  
Xuegang He ◽  
...  

Abstract Background: Spinal cord injury (SCI) is a severe central nervous system injury for which few efficacious drugs are available. Rosmarinic acid (RA), a water-soluble polyphenolic phytochemical, has antioxidant, anti-inflammatory, and anti-apoptotic properties. However, the effect of RA on SCI is unclear. We investigated the therapeutic effect and underlying mechanism of RA on SCI in vivo and in vitro. Methods: In vivo experiment, The BBB locomotion scale, the inclined plane test, Nissl staining, and spinal cord edema were employed to determine the neuroprotective effects of RA treatment after SCI. Inflammatory and oxidative stress markers were detected by commercial kits and cell apoptosis status was measured by TUNEL staining. A proteomics and bioinformatics approach, together with Western blotting, was used to investigate the effect of RA on the proteome of SCI rats. In vitro experiment, oxidative stress and inflammatory injury were induced by H2O2 and LPS stimulation. Effects of RA on cell viability, apoptosis, inflammatory, and oxidative stress were evaluated. Results: Using a rat model of SCI, we showed that RA improved locomotor recovery after SCI and significantly mitigated neurological deficit, increased neuronal preservation, and reduced apoptosis. Also, RA inhibited activation of microglia and the release of TNF-α, IL-6, and IL-1β and MDA. Moreover, proteomics analyses identified the Nrf2 and NF-κB pathways as targets of RA. Pretreatment with RA increased levels of Nrf2 and HO-1 and reduced those of TLR4 and MyD88 as well as phosphorylation of IkB and subsequent nuclear translocation of NF-κB-p65. Using H2O2- and LPS-induced PC12 cells, we found that RA ameliorated the H2O2-induced decrease in viability and increase in apoptosis and oxidative injury by activating the Nrf2/HO-1 pathway. Also, LPS-induced cytotoxicity and increased apoptosis and inflammatory injury in PC-12 cells were mitigated by RA by inhibiting the TLR4/NF-κB pathway. The Nrf2 inhibitor ML385 weakened the effect of RA on oxidant stress, inflammation and apoptosis in SCI rats, and significantly increased the nuclear translocation of NF-κB. Conclusions: Therefore, the neuroprotective effect on SCI of RA may be due to its antioxidant and anti-inflammatory properties, which are mediated by modulation of the Nrf2/HO-1 and TLR4/NF-κB pathways. Moreover, RA activated Nrf2/HO-1, which amplified its inhibition of the NF-κB pathway.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Xing Li ◽  
Jiheng Zhan ◽  
Yu Hou ◽  
Yonghui Hou ◽  
Shudong Chen ◽  
...  

Spinal cord injury (SCI) has always been considered to be a devastating problem that results in catastrophic dysfunction, high disability rate, low mortality rate, and huge cost for the patient. Stem cell-based therapy, especially using bone marrow mesenchymal stem cells (BMSCs), is a promising strategy for the treatment of SCI. However, SCI results in low rates of cell survival and a poor microenvironment, which limits the therapeutic efficiency of BMSC transplantation. Coenzyme Q10 (CoQ10) is known as a powerful antioxidant, which inhibits lipid peroxidation and scavenges free radicals, and its combined effect with BMSC transplantation has been shown to have a powerful impact on protecting the vitality of cells, as well as antioxidant and antiapoptotic compounds in SCI. Therefore, we aimed to evaluate whether CoQ10 could decrease oxidative stress against the apoptosis of BMSCs in vitro and explored its molecular mechanisms. Furthermore, we investigated the protective effect of CoQ10 combined with BMSCs transplanted into a SCI model to verify its ability. Our results demonstrate that CoQ10 treatment significantly decreases the expression of the proapoptotic proteins Bax and Caspase-3, as shown through TUNEL-positive staining and the products of oxidative stress (ROS), while increasing the expression of the antiapoptotic protein Bcl-2 and the products of antioxidation, such as glutathione (GSH), against apoptosis and oxidative stress, in a H2O2-induced model. We also identified consistent results from the CoQ10 treatment of BMSCs transplanted into SCI rats in vivo. Moreover, the Nrf-2 signaling pathway was also investigated in order to detail its molecular mechanism, and the results show that it plays an important role, both in vitro and in vivo. Thus, CoQ10 exerts an antiapoptotic and antioxidant effect, as well as improves the microenvironment in vitro and in vivo. It may also protect BMSCs from oxidative stress and enhance their therapeutic efficiency when transplanted for SCI treatment.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2245
Author(s):  
Jue-Zong Yeh ◽  
Ding-Han Wang ◽  
Juin-Hong Cherng ◽  
Yi-Wen Wang ◽  
Gang-Yi Fan ◽  
...  

In spinal cord injury (SCI) therapy, glial scarring formed by activated astrocytes is a primary problem that needs to be solved to enhance axonal regeneration. In this study, we developed and used a collagen scaffold for glial scar replacement to create an appropriate environment in an SCI rat model and determined whether neural plasticity can be manipulated using this approach. We used four experimental groups, as follows: SCI-collagen scaffold, SCI control, normal spinal cord-collagen scaffold, and normal control. The collagen scaffold showed excellent in vitro and in vivo biocompatibility. Immunofluorescence staining revealed increased expression of neurofilament and fibronectin and reduced expression of glial fibrillary acidic protein and anti-chondroitin sulfate in the collagen scaffold-treated SCI rats at 1 and 4 weeks post-implantation compared with that in untreated SCI control. This indicates that the collagen scaffold implantation promoted neuronal survival and axonal growth within the injured site and prevented glial scar formation by controlling astrocyte production for their normal functioning. Our study highlights the feasibility of using the collagen scaffold in SCI repair. The collagen scaffold was found to exert beneficial effects on neuronal activity and may help in manipulating synaptic plasticity, implying its great potential for clinical application in SCI.


2013 ◽  
Vol 2 (10) ◽  
pp. 731-744 ◽  
Author(s):  
Christopher J. Sontag ◽  
Hal X. Nguyen ◽  
Noriko Kamei ◽  
Nobuko Uchida ◽  
Aileen J. Anderson ◽  
...  

2018 ◽  
Vol 300 ◽  
pp. 247-258 ◽  
Author(s):  
Ioana Goganau ◽  
Beatrice Sandner ◽  
Norbert Weidner ◽  
Karim Fouad ◽  
Armin Blesch

2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Elisa Garcia ◽  
Jorge Aguilar-Cevallos ◽  
Raul Silva-Garcia ◽  
Antonio Ibarra

Spinal cord injury results in a life-disrupting series of deleterious interconnected mechanisms encompassed by the primary and secondary injury. These events are mediated by the upregulation of genes with roles in inflammation, transcription, and signaling proteins. In particular, cytokines and growth factors are signaling proteins that have important roles in the pathophysiology of SCI. The balance between the proinflammatory and anti-inflammatory effects of these molecules plays a critical role in the progression and outcome of the lesion. The excessive inflammatory Th1 and Th17 phenotypes observed after SCI tilt the scale towards a proinflammatory environment, which exacerbates the deleterious mechanisms present after the injury. These mechanisms include the disruption of the spinal cord blood barrier, edema and ion imbalance, in particular intracellular calcium and sodium concentrations, glutamate excitotoxicity, free radicals, and the inflammatory response contributing to the neurodegenerative process which is characterized by demyelination and apoptosis of neuronal tissue.


2020 ◽  
Vol 21 (19) ◽  
pp. 7031
Author(s):  
Zhuo-Hao Liu ◽  
Yin-Cheng Huang ◽  
Chang-Yi Kuo ◽  
Chao-Ying Kuo ◽  
Chieh-Yu Chin ◽  
...  

Spinal cord injury (SCI) is associated with disability and a drastic decrease in quality of life for affected individuals. Previous studies support the idea that docosahexaenoic acid (DHA)-based pharmacological approach is a promising therapeutic strategy for the management of acute SCI. We postulated that a nanostructured material for controlled delivery of DHA at the lesion site may be well suited for this purpose. Toward this end, we prepare drug-loaded fibrous mats made of core-shell nanofibers by electrospinning, which contained a polylactic acid (PLA) shell for encapsulation of DHA within the core, for delivery of DHA in situ. In vitro study confirmed sustained DHA release from PLA/DHA core-shell nanofiber membrane (CSNM) for up to 36 days, which could significantly increase neurite outgrowth from primary cortical neurons in 3 days. This is supported by the upregulation of brain-derived neurotropic factor (BDNF) and neurotrophin-3 (NT-3) neural marker genes from qRT-PCR analysis. Most importantly, the sustained release of DHA could significantly increase the neurite outgrowth length from cortical neuron cells in 7 days when co-cultured with PLA/DHA CSNM, compared with cells cultured with 3 μM DHA. From in vivo study with a SCI model created in rats, implantation of PLA/DHA CSNM could significantly improve neurological functions revealed by behavior assessment in comparison with the control (no treatment) and the PLA CSNM groups. According to histological analysis, PLA/DHA CSNM also effectively reduced neuron loss and increased serotonergic nerve sprouting. Taken together, the PLA/DHA CSNM may provide a nanostructured drug delivery system for DHA and contribute to neuroprotection and promoting neuroplasticity change following SCI.


Author(s):  
Dasa Cizkova ◽  
Françoise Le Marrec-Croq ◽  
Julien Franck ◽  
Lucia Slovinska ◽  
Ivana Grulova ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vera Paschon ◽  
Beatriz Cintra Morena ◽  
Felipe Fernandes Correia ◽  
Giovanna Rossi Beltrame ◽  
Gustavo Bispo dos Santos ◽  
...  

Abstract During the progression of the neurodegenerative process, mitochondria participates in several intercellular signaling pathways. Voltage-dependent anion-selective channel 1 (VDAC1) is a mitochondrial porin involved in the cellular metabolism and apoptosis intrinsic pathway in many neuropathological processes. In spinal cord injury (SCI), after the primary cell death, a secondary response that comprises the release of pro-inflammatory molecules triggers apoptosis, inflammation, and demyelination, often leading to the loss of motor functions. Here, we investigated the functional role of VDAC1 in the neurodegeneration triggered by SCI. We first determined that in vitro targeted ablation of VDAC1 by specific morpholino antisense nucleotides (MOs) clearly promotes neurite retraction, whereas a pharmacological blocker of VDAC1 oligomerization (4, 4′-diisothiocyanatostilbene-2, 2′-disulfonic acid, DIDS), does not cause this effect. We next determined that, after SCI, VDAC1 undergoes conformational changes, including oligomerization and N-terminal exposition, which are important steps in the triggering of apoptotic signaling. Considering this, we investigated the effects of DIDS in vivo application after SCI. Interestingly, blockade of VDAC1 oligomerization decreases the number of apoptotic cells without interfering in the neuroinflammatory response. DIDS attenuates the massive oligodendrocyte cell death, subserving undisputable motor function recovery. Taken together, our results suggest that the prevention of VDAC1 oligomerization might be beneficial for the clinical treatment of SCI.


2017 ◽  
Vol 44 (3) ◽  
pp. 1224-1241 ◽  
Author(s):  
Jichen He ◽  
Jinmin Zhao ◽  
Xiaoming Peng ◽  
Xiongzhi Shi ◽  
Shaohui Zong ◽  
...  

Background/Aims: The pathophysiology of spinal cord injury (SCI) results in serious damage to the human body via an increase in the secondary biological processes imposed by activated astrocytes. Abnormal expression of microRNAs after SCI has become a potential research focus. However, the underlying mechanisms are poorly understood. Methods: SCI models were established in rats using Allen’s method, and the BBB scoring method was employed to assess locomotor function. Lentivirus was used to infect rat astrocytes and SCI rats. Real-time PCR and antibody chip were used to measure gene expression and cytokine secretion. Western blot analysis was employed to detect protein expression. HE staining was used to assess the histological changes in SCI. The immunohistochemical staining of A20 and p-NF-κB in SCI was also analyzed. Results: The in vitro experiment showed that miR-136-5p up-regulated the expression of p-NF-κB by down-regulating the expression of A20 so that astrocytes produced inflammatory factors and chemokines. The in vivo experiment indicated that overexpressed miR-136-5p promoted the production of inflammatory factors, chemokines and p-NF-κB in SCI rats, whereas it inhibited the expression of A20 protein and increased inflammatory cell infiltration and injuries in the spinal cord. Conclusion: The current findings indicate that silencing miR-136-5p effectively decreased inflammatory factors and chemokines and protected the spinal cord via NF-κB/A20 signaling in vivo and in vitro. In contrast, overexpression of miR-136-5p had the opposite effect.


Sign in / Sign up

Export Citation Format

Share Document