scholarly journals A Review on Friction Stir Welding of Steels

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Dhanesh G Mohan ◽  
ChuanSong Wu

AbstractFriction Stir Welding (FSW) is the most promising solid-state metals joining method introduced in this era. Compared to the conventional fusion welding methods, this FSW can produce joints with higher mechanical and metallurgical properties. Formerly, FSW was adopted for low melting metals like aluminum alloys. In recent years it has made significant progress in friction stir welding of steels since unfavourable phase transformations occurred in welds due to the melting of the parent and filler metals in fusion welding can be eliminated. The main advantage of FSW over traditional fusion welding is the reduction in the heat-affected zone (HAZ), and the joints exhibit excellent mechanical and corrosion resistance properties. This article reviews the progress in the relevant issues such as the FSW tool materials and tool profiles for joining steels, microstructure and mechanical properties of steels joints, special problems in joining dissimilar steels. Moreover, in-situ heating sources was used to overcome the main limitations in FSW of hard metals and their alloys, i.e., tool damages and insufficient heat generation. Different in-situ heating sources like laser, induction heat, gas tungsten arc welding assisted FSW for various types of steels are introduced in this review. On the basis of the up-to-date status, some problems that need further investigation are put forward.

2018 ◽  
Vol 144 ◽  
pp. 03002 ◽  
Author(s):  
Prabhu Subramanya ◽  
Murthy Amar ◽  
Shettigar Arun ◽  
Herbert Mervin ◽  
Rao Shrikantha

Friction stir welding (FSW) is established as one of the prominent welding techniques to join aluminium matrix composites (AMCs). It is a solid state welding process, takes place well below the melting temperature of the material, eliminates the detrimental effects of conventional fusion welding process. Although the process is capable to join AMCs, challenges are still open that need to be fulfill to widen its applications. This paper gives the outline of the friction stir welding technique used to join AMCs. Effect of process variables on the microstructure and mechanical properties of the joints, behavior of reinforcing materials during welding, effect of tool profiles on the joint strength are discussed in detail. Few improvements and direction for future research are also proposed.


2010 ◽  
Vol 117 ◽  
pp. 37-42
Author(s):  
K.Ratna Kumar ◽  
G. Madhusudhan Reddy ◽  
K. Srinivasa Rao

In this work, it was intended to improve the corrosion resistance of welds of A356 and AA6061 by adopting mainly a special welding techniques, viz., pulsed current gas tungsten arc welding (PCGTAW), electron beam welding (EBW) and friction stir welding (FSW). It was found that the corrosion resistance of A356 and AA6061 welds could be improved by PCGTAW technique rather than continuous current gas tungsten arc welding (CCGTAW). It can be further improved by using electron beam welding. Improved corrosion resistance in A356 welds could be obtained by selecting T6 temper rather than as cast condition. In the case of AA6061, improved corrosion resistance was achieved by selecting T4 temper rather than T6 temper. As for as the welding techniques, friction stir welding (FSW) is useful than fusion welding techniques like CCGTAW,PCGTAW and EBW for improving the corrosion resistance of both the welds.


Author(s):  
M Bevilacqua ◽  
FE Ciarapica ◽  
A Forcellese ◽  
M Simoncini

The life-cycle assessment methodology was used to evaluate the environmental impact of friction stir welding of AA5754-H114 aluminium alloy sheets. Other works in literature considered the environmental impact of friction stir welding, but in this study the influence of different process parameters on midpoint category impacts were analysed. Friction stir welding was performed under different values of rotational and welding speeds. Moreover, pin tool wear and mechanical properties of joints were also evaluated. The pre- and post-processing stages were also considered. Raw materials, energy and all inputs associated with each stage of product life cycle were collected and evaluated to analyse the environmental impact index. The results showed that, irrespective of the rotational speed, the lowest welding speed investigated leads to the highest energy consumption and, consequently, to the highest values of the midpoint category impact. On the contrary, at the highest welding speed, the environmental impact assumes the lowest values. By concerning the rotational speed, its effect on the midpoint category impact is strongly reduced compared with the one given by the welding speed. A performance index, obtained by considering both the midpoint category impact and ultimate tensile strength of the joints, was also defined. Finally, the environmental sustainability of friction stir welding was compared with two different fusion welding technologies, namely gas tungsten arc welding and laser beam welding. The results showed that friction stir welding was characterized by midpoint category impacts much lower than those of the gas tungsten arc welding, while such discrepancies decreased with the laser beam welding.


Fusion welding of aluminium alloys results in solidification cracking, porosity etc. which affects the properties of the weldment. FSW which is broadly used in welding of aluminium alloys. It overcomes the defects of fusion welding process in improving the properties of the joints. The current paper focus on studying the tensile properties of the disparate FSW of aluminium alloys AA6082 and A319 .Three dissimilar tool profiles (square, hexagonal and cylindrical) with three welding speeds (25, 30, 35 mm/min) and three tool rotational speeds (800, 1000 and 1300 rpm) have been used in studying the joint properties of the weld. Higher tensile strength was obtained for the parameters of square tool profile, 30 mm/min and 1300 rpm.


2021 ◽  
Vol 50 (9) ◽  
pp. 2743-2754
Author(s):  
Ashish Jacob ◽  
Sachin Maheshwari ◽  
Arshad Noor Siddiquee ◽  
Abdulrahman Al-Ahmari ◽  
Mustufa Haider Abidi ◽  
...  

Certain age hardenable alloys such as AA7475 cannot be joined with perfection using fusion welding techniques. This requires non-conventional welding technique such as friction stir welding process to join these ‘difficult to weld’ alloys. In this study, three different cooling conditions i.e. cryogenic, sub-zero, and zero-degree Celsius temperature conditions have been analyzed to understand its impact on the welding process. In-process cooling was found to behave effectively and also enhanced the mechanical properties of the welded joints. A stable microstructure was clearly seen in the images observed under the metallurgical microscope. The weld efficiencies were found to be good in each of the samples which are indicative of a strong metallic joint. The effective cooling conditions employed had an overall positive impact on the joint.


Author(s):  
Santosh Vanama

<p>The paper propose modelling and fabrication of friction stir welding end-effector for ABB IRB1410 robot. A dynamically developing version of pressure welding processes, join material without reaching the fusion temperature called friction stir welding. As friction stir welding occurs in solid state, no solidification structures are created thereby eliminating the brittle and eutectic phase’s common to fusion welding of high strength aluminium alloys. In this paper, Friction stir welding is applied to aluminum sheets of 2 mm thickness. A prototype setup is developed to monitor the evolution of main forces and tool temperature during the operation. Pressure of a gripper plays a major role for tool rotation and developing torque.  Fabrication of the tool has done. Force calculations are done by placing the sensors on the outer surface of gripper. Methods of evaluating weld quality are surveyed as well.</p>


Author(s):  
Lewis N. Payton

Friction Stir Welding (FSW) is a solid-state joining process invented by The Welding Institute (TWI, United Kingdom) in 1991 in partnership with the National Aeronautics Space Agency. The process is emerging as one of the preferred alternative methods to permanently join materials that are difficult to join with traditional fusion methods (e.g., MIG, TIG, etc.). The welding of various copper alloys to various aluminum alloys is of great interest to the nuclear industry and the electrical distribution industry. The very different melting points of these two alloys preclude traditional fusion welding. Since the pin tool is simultaneously rotating and traversing through the work piece, flow around the tool is asymmetrical. This has led to designating one side of the tool as advancing and the opposite side as retreating. On the advancing side of the weld, the tool has a tangential velocity in the same direction as the weld is being created. The retreating side of the weld tool is the opposite. It can be can expected that asymmetric heating and deformation will occur in the weld due to this advancing/retreating nature of the FSW pin tool. Although previous studies have been performed that have observed this asymmetric behavior in both similar and dissimilar materials, the resulting welds have been of a poor quality. Large statistical experiments were conducted locally to study the effects of tool geometry, process parameters, and material composition have upon the friction stir butt welding of aluminum alloy 6061-T6 to copper alloy 11000 using a modern conventional 3-axis CNC vertical mill. The research seeks to determine (1) which direction a dissimilar metal friction stir weld between aluminum and copper should be executed, (2) the optimal shoulder diameter to be used when friction stir welding aluminum and copper on a CNC mill, and (3) the addition of a third material to act as an aide. The extensive statistical interactions between these parameters is also documented. A weld schedule was developed that resulted in an ultimate tensile strength (UTS) surpassing (greater than 90% of the weaker, more ductile copper alloy UTS strength) what has been documented in the current literature despite the machine limitations of the CNC vertical mill. Proper optimization of the welding schedule developed may approach 100 percent of the basic copper 11000 properties across the welded zone into the aluminum 6061-T6 alloy.


2021 ◽  
Vol 63 (9) ◽  
pp. 829-835
Author(s):  
Sare Çelik ◽  
Fatmagül Tolun

Abstract AA5754Al alloy is widely used in industry. However, as in the case of all Al alloys, the 5xxx series Al alloys cannot be easily joined through fusion welding techniques. To address this problem, in this study, the effect of double-sided friction stir welding at various tool rotational speeds (450, 710, and 900 rpm), feeding rates (40, 50, and 80 mm × min-1), and tool tilt angles (0°, 1°, 2°) on the welding parameters and mechanical and microstructural characteristics of AA5754 Al alloy was determined. Tensile strength tests and microhardness tests were performed to examine the mechanical properties of the welded specimens. The microstructures of the welded zone were examined by obtaining optical microscopy and scanning electron microscopy images. The tensile test results indicated that the specimens exhibited the highest welding performance of 95.17 % at a tool rotational speed, feed rate, and tool tilt angle of 450 rpm, 50 mm × min-1 and 1°, respectively.


2022 ◽  
pp. 206-214
Author(s):  
Radha R. ◽  
Sreekanth D. ◽  
Tushar Bohra ◽  
Surya Bhan Pratap Singh

Friction stir welding (FSW) is considered to be the most significant development in solid state metal joining processes. This joining technique is energy efficient, environmentally friendly, and versatile. In particular, it can be used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding. The project aims to join Aluminum 6063 alloy plates by FSW and emphasize the (1) mechanisms responsible for the formation of welds without any defects, microstructural refinement, and (2) effects of FSW parameters on resultant microstructure, mechanical, and corrosion properties.


Sign in / Sign up

Export Citation Format

Share Document