scholarly journals Effects of an innovative densification process on mechanical and physical properties of beech and Norway spruce veneers

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Alex Cencin ◽  
Michela Zanetti ◽  
Tiziana Urso ◽  
Alan Crivellaro

AbstractIncreased wood density is obtained by compressing the wood porous structure under suitable moisture and temperature conditions to improve its physical, mechanical and color properties. A recently proposed wood densification method based on partial removal of lignin and hemicellulose in hot water solution of sodium hydroxide and sodium sulphite has shown promising results on solid wood. However, its applicability and effect on thin wood veneers have not been tested yet. In this study, the timing of the method has been adapted to estimate the densification treatment intensity dependence of wood properties (wood density and modulus of elasticity) and color change of softwood (Norway spruce) and hardwood (beech) veneers. Compared to control, density and rigidity increased, with improved wood properties peaking after only 90 s of treatment intensity. Furthermore, the color became darker after treatment compared to control, with no significant color difference between treatment intensities. In conclusion, densification of veneers, according to the presented adapted method, provides a significant improvement of veneers physical and mechanical properties, and produces color changes perceptible by the human eye. Our results can be further implemented and adapted to application in industrial plants, calling for new application of densified veneers.

2021 ◽  
Vol 891 (1) ◽  
pp. 012007
Author(s):  
Y S Hadi ◽  
E N Herliyana ◽  
I M Sulastiningsih ◽  
E Basri ◽  
R Pari ◽  
...  

Abstract Jabon (Anthocephalus cadamba) laminas were impregnated with polystyrene and reached 21.2% polymer loading. The laminas were manufactured for three-layer glued laminated timber (glulam) using isocyanate glue with glue spread 280 g/m2 and cold-press process. For comparison purposes, untreated glulam as control and also solid wood were prepared. The physical-mechanical properties were evaluated according to the Japanese Agricultural Standard (JAS) 234-2003. The results showed that the color of glulam was not different from polystyrene glulam. The density of polystyrene glulam was higher than untreated glulam and solid wood, but the moisture content was lower than the other. The product kinds of solid wood, untreated glulam, and polystyrene glulam did not affect shear strength and modulus of rupture (MOR), while the modulus of elasticity (MOE) of untreated glulam and hardness of polystyrene glulam were the highest values and the other products were not different one each other. Both kinds of glulam fulfilled the Japanese standard in terms of moisture content, MOR, and delamination in hot water, but MOE and shear strength did not. Regarding its advantages, polystyrene glulam could be further developed using a higher wood density.


2004 ◽  
Vol 53 (1-6) ◽  
pp. 45-50 ◽  
Author(s):  
T. Markussen ◽  
A. Tusch ◽  
B. R. Stephan ◽  
M. Fladung

AbstractThe identification of AFLP markers and their subsequent conversion to SCAR-markers linked to wood density of Norway Spruce (Picea abies L [Karst.]) is described for the first time. In AFLP-analyses, 102 different primer enzyme combinations were screened in a bulked segregant approach comparing individuals with high and low wood density. A total of 107 polymorphic AFLP fragments were obtained between the DNA-pools. Twenty-three markers were selected for further analyses to verify their linkage to wood density based on individuals used for pool constitution and additional unrelated clonal material. For 15 markers, a significant linkage to wood density was confirmed by a two-sided Fisher’s-exact test. Four markers were converted into SCAR markers and validated for plant material assayed for wood density by X-ray microdensitometry. For each marker a monomorphic band was obtained using sets of nested primers or restriction site-specific primers (RSS), which include the AFLP-restriction recognition sites. For two markers that are linked to high wood density, a separation from unlinked size homologous marker-alleles was realized by a PCR-restriction approach. Validation of these markers in different full-sib families confirmed their usability to separate the classes for low and high wood density of Picea abies.


2015 ◽  
Vol 72 (4) ◽  
pp. 499-508 ◽  
Author(s):  
Zhi-Qiang Chen ◽  
Bo Karlsson ◽  
Sven-Olof Lundqvist ◽  
María Rosario García Gil ◽  
Lars Olsson ◽  
...  

2012 ◽  
Vol 42 (1) ◽  
pp. 38-46 ◽  
Author(s):  
Yohama Puentes Rodriguez ◽  
Helena Puhakka-Tarvainen ◽  
Ossi Pastinen ◽  
Matti Siika-aho ◽  
Leila Alvila ◽  
...  

The structure of softwoods, which confers resistance to degradation through hydrolysis and decay, currently limits their use for the production of biofuels. However, since wood is very heterogeneous, it is possible that differences in wood properties within and between trees could differentially affect its processability. In this research, heartwood (inner) and sapwood (outer) from Norway spruce ( Picea abies (L.) Karst.) clones were enzymatically hydrolyzed by Trichoderma viride cellulases after concentrated acid pretreatment. Wood sections with two particle sizes were compared based on their susceptibility to enzymatic hydrolysis, evaluated by assaying the formation of hydrolysis products and measured as reducing sugar yield (RSY). We also studied the relationship between RSY and the susceptibility to Heterobasidion parviporum wood decay and whether these traits are reflected in wood density and yield. Wood from the outer section produced more RSY with higher glucan but lower lignin content than wood from the inner section. Furthermore, susceptibility to enzymatic hydrolysis was positively correlated with H. parviporum wood decay, while both processes were negatively correlated with wood density. Our results revealed the importance of clonal trials for identifying suitable lignocellulosic biomass when considering wood properties and indicate that potential genotypes for the production of biofuels are not necessarily the most productive.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 546 ◽  
Author(s):  
Pauls Zeltiņš ◽  
Juris Katrevičs ◽  
Arnis Gailis ◽  
Tiit Maaten ◽  
Endijs Bāders ◽  
...  

The choice of seed material (genetics) is one of the tools that can improve adaptation to the changing climate. Insufficient adaptation can result in a number of potential risks, including stem cracking. The goal of this study is to assess the influence of genetics and wood properties on stem cracking in Norway spruce (Picea abies Karst). The study was conducted on a 35-year-old provenance trial in Eastern Latvia. Stem cracks were assessed using a six-score scale. Tree-ring parameters, i.e., latewood proportion, maximum and mean density, mean earlywood, and latewood density were analysed. The overall incidence of stem cracking was 23.5%, varying between 0% and 79% at a family mean level. Heritability of stem cracking was low, ca., two times lower than for the diameter at breast height (DBH): h2 = 0.09 and 0.21, respectively. There were non-significant family and provenance effects on the occurrence of stem cracks, and weak family mean correlations between DBH, and the proportion of trees with any stem cracks or severe stem cracks. Overall, larger trees were more prone to cracking irrespective of provenance or family. Cracked trees had lower wood density parameters than unaffected trees, yet the latewood proportion was similar. Silvicultural treatments or selection to improve wood density could be suggested to reduce the risk of stem cracking.


2020 ◽  
Author(s):  
Linghua Zhou ◽  
Zhiqiang Chen ◽  
Lars Olsson ◽  
Thomas Grahn ◽  
Bo Karlsson ◽  
...  

Abstract Genomic selection (GS) or genomic prediction is considered as a promising approach to accelerate tree breeding and increase genetic gain by shortening breeding cycle. We investigated the predictive ability (PA) of GS based on 484 progeny trees from 62 half-sib families in Norway spruce ( Picea abies (L.) Karst.) for wood density, modulus of elasticity (MOE) and microfibril angle (MFA) measured with SilviScan, as well as for measurements on standing trees by Pilodyn and Hitman instruments. GS predictive abilities (PA) were comparable with those based on pedigree-based selection. The highest PAs were reached with at least 80-90% of the dataset used as training set. Use of different statistical methods had no significant impact on the estimated PAs. We also compared the abilities to predict density, MFA and MOE of 19 year old trees with use of models trained on data from coring at different ages and to different depths into the stem. The comparison indicated that close to the maximal PAs can be reached at age 10-12 by drilling only half way (ringwise) towards the pith, thereby reducing the impact on the tree.


2020 ◽  
Author(s):  
Linghua Zhou ◽  
Zhiqiang Chen ◽  
Lars Olsson ◽  
Thomas Grahn ◽  
Bo Karlsson ◽  
...  

AbstractGenomic selection (GS) or genomic prediction is considered as a promising approach to accelerate tree breeding and increase genetic gain by shortening breeding cycle, but the efforts to develop routines for operational breeding are so far limited. We investigated the predictive ability (PA) of GS based on 484 progeny trees from 62 half-sib families in Norway spruce (Picea abies (L.) Karst.) for wood density, modulus of elasticity (MOE) and microfibril angle (MFA) measured with SilviScan, as well as for measurements on standing trees by Pilodyn and Hitman instruments. GS predictive abilities were comparable with those based on pedigree-based prediction. The highest PAs were reached with at least 80-90% of the dataset used as training set. Use of different statistical methods had no significant impact on the estimated PAs. We also compared the abilities to predict density, MFA and MOE of 19 year old trees with models trained on data from coring at different ages and to different depths into the stem. 78-95% of the maximal PAs obtained from coring to the pith at high age were reached by using data possible to obtain by drilling 3-5 rings towards the pith at tree age 10-12, thereby shortening the cycle and reducing the impact on the tree.


2009 ◽  
Vol 39 (1) ◽  
pp. 26-35 ◽  
Author(s):  
Y. Puentes Rodriguez ◽  
A. Zubizarreta Gerendiain ◽  
A. Pappinen ◽  
H. Peltola ◽  
P. Pulkkinen

In forest breeding, growth has been used as the main selection trait in Norway spruce (Picea abies L. Karst.), whereas wood properties or resistance to pathogens have been taken as secondary traits. We aimed to investigate, in laboratory conditions, the rate of wood decay caused by Heterobasidion parviporum (Fr.) Niemelä & Korhonen (strains 5 and 7) in 20 Norway spruce clones. We also studied if, on average, growth, wood density, and fibre properties differed in the most and least decayed clones as well as from pith to bark. After 6 months of incubation, strain 7 effected significantly higher wood decay than strain 5 (mean 16.9% and 1.7%, respectively). The difference between the five most decayed and five least decayed clones by strain 7 was also statistically significant (P < 0.05). Moreover, regardless of clone or strain, the wood decay was highest near the pith and lowest near the bark, which is the opposite for wood density and fibre length and width. However, neither wood density nor fibre properties explained, statistically, the differences in average wood decay and decay from pith to bark. On the other hand, we could identify clones that simultaneously provided high wood quantity and relatively high wood density and low decay rate.


2016 ◽  
Vol 12 (6) ◽  
Author(s):  
Zhi-Qiang Chen ◽  
Bo Karlsson ◽  
Tommy Mörling ◽  
Lars Olsson ◽  
Ewa J. Mellerowicz ◽  
...  

2019 ◽  
Vol 49 (7) ◽  
pp. 810-818 ◽  
Author(s):  
Linghua Zhou ◽  
Zhiqiang Chen ◽  
Sven-Olof Lundqvist ◽  
Lars Olsson ◽  
Thomas Grahn ◽  
...  

A two-generation pedigree involving 519 Norway spruce (Picea abies (L.) Karst.) plus trees (at clonal archives) and their open-pollinated (OP) progenies was studied with the aim to evaluate the potential of plus-tree selection based on phenotype data scored on the plus trees. Two wood properties (wood density and modulus of elasticity, MOE) and one fiber property (microfibril angle, MFA) were measured with a SilviScan instrument on samples from one ramet per plus tree and 12 OP progenies per plus tree (total of 6288 trees). Three ramets per plus tree and their OP progenies were also assessed for Pilodyn penetration depth and Hitman acoustic velocity, which were used to estimate MOE. The narrow-sense heritability (h2) estimates based on parent–offspring regression were marginally higher than those based on half-sib correlation when three ramets per plus tree were included. For SilviScan data, estimates of the correlation between half-sib, progeny-based breeding values (BVs) and plus-tree phenotypes, as well as repeatability estimates, were highest for wood density, followed by MOE and MFA. Considering that the repeatability estimates from the clonal archive trees were higher than any h2 estimate, selection of the best clones from clonal archives would be an effective alternative.


Sign in / Sign up

Export Citation Format

Share Document