scholarly journals Facile Fabrication of BiF3: Ln (Ln = Gd, Yb, Er)@PVP Nanoparticles for High-Efficiency Computed Tomography Imaging

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jun Xie ◽  
Zonglang Zhou ◽  
Sihan Ma ◽  
Xian Luo ◽  
Jiajing Liu ◽  
...  

AbstractX-ray computed tomography (CT) has been widely used in clinical practice, and contrast agents such as Iohexol are often used to enhance the contrast of CT imaging between normal and diseased tissue. However, such contrast agents can have some toxicity. Thus, new CT contrast agents are urgently needed. Owing to the high atomic number (Z = 83), low cost, good biological safety, and great X-ray attenuation property (5.74 cm2 kg−1 at 100 keV), bismuth has gained great interest from researchers in the field of nano-sized CT contrast agents. Here, we synthesized BiF3: Ln@PVP nanoparticles (NPs) with an average particle size of about 380 nm. After coating them with polyvinylpyrrolidone (PVP), the BiF3: Ln@PVP NPs possessed good stability and great biocompatibility. Meanwhile, compared with the clinical contrast agent Iohexol, BiF3: Ln@PVP NPs showed superior in vitro CT imaging contrast. Subsequently, after in situ injection with BiF3: Ln@PVP NPs, the CT value of the tumor site after the injection was significantly higher than that before the injection (the CT value of the pre-injection and post-injection was 48.9 HU and 194.58 HU, respectively). The morphology of the gastrointestinal (GI) tract can be clearly observed over time after oral administration of BiF3: Ln@PVP NPs. Finally, the BiF3: Ln@PVP NPs were completely discharged from the GI tract of mice within 48 h of oral administration with no obvious damage to the GI tract. In summary, our easily synthesized BiF3: Ln@PVP NPs can be used as a potential clinical contrast agent and may have broad application prospects in CT imaging.

2021 ◽  
Vol 13 (9) ◽  
pp. 1674-1684
Author(s):  
Yangfan Zhang ◽  
Yuanyuan Luo ◽  
Xinglei Wu ◽  
Liuqiong Yang ◽  
Dandan Cui ◽  
...  

Traditional computed tomography (CT) contrast agents, such as iodine-containing small molecules (omnipaque), have limitations in some applications. The development of nanotechnology has made it possible to develop CT contrast agents based on this technology. In this study, a large number of surface functional groups of the fifth-generation polyamide-amine dendrimer (P5-NH2) were applied to functionally modify polyethylene glycol (PEG), targeting molecules, or drugs, which were used as the carrier of CT contrast agents. With the help of sodium borohydride (NaBH4), there was a rapid reduction. The fluorescein thiocyanate (FT) and PEG modified with lactobionic acid (PEG-LA) weres connected before gold coating to obtain gold nanoparticles coated with targeted dendrimer (Au(P5-LA)DENPs). In the experiment, the gold nanoparticles were characterized, and the liver cancer nude mouse model was established, so as to analyze the CT imaging performance of the material. Besides, the above was applied in the motor function of children with cerebral palsy, and the improvement effect of CT imaging combined with transcranial magnetic stimulation based on the preparation of nanomaterials on the movement function of children was analyzed and demonstrated with the help of graph theory. The results showed that the average particle size of gold nanoparticles was 1.88 nm. Within the range of 5 °C–50 °C and pH = 4–7, the physical properties of the aqueous solution of this material were stable. What’s more, the cell activity still exceeded 80% when the material concentration reached 2000 nm. The nude mouse model of liver cancer indicated that the CT imaging based on this material enhanced the image contrast effect of the tumor part, and the material had no obvious toxic and side effects. CT imaging based on the preparation of nanomaterials can promote transcranial magnetic stimulation to accelerate the efficiency of brain movement, accelerate the global and local information exchange and integration speed of brain network, thereby improving the movement function of children.


2019 ◽  
Vol 20 (7) ◽  
pp. 1560 ◽  
Author(s):  
Chia-Hui Chu ◽  
Shih-Hsun Cheng ◽  
Nai-Tzu Chen ◽  
Wei-Neng Liao ◽  
Leu-Wei Lo

Nanoparticle-based imaging contrast agents have drawn tremendous attention especially in multi-modality imaging. In this study, we developed mesoporous silica nanoparticles (MSNs) for use as dual-modality contrast agents for computed tomography (CT) and near-infrared (NIR) optical imaging (OI). A microwave synthesis for preparing naked platinum nanoparticles (nPtNPs) on MSNs (MSNs-Pt) was developed and characterized with physicochemical analysis and imaging systems. The high density of nPtNPs on the surface of the MSNs could greatly enhance the CT contrast. Inductively coupled plasma mass spectrometry (ICP-MS) revealed the MSNs-Pt compositions to be ~14% Pt by weight and TEM revealed an average particle diameter of ~50 nm and covered with ~3 nm diameter nPtNPs. To enhance the OI contrast, the NIR fluorescent dye Dy800 was conjugated to the MSNs-Pt nanochannels. The fluorescence spectra of MSNs-Pt-Dy800 were very similar to unconjugated Dy800. The CT imaging demonstrated that even modest degrees of Pt labeling could result in substantial X-ray attenuation. In vivo imaging of breast tumor-bearing mice treated with PEGylated MSNs-Pt-Dy800 (PEG-MSNs-Pt-Dy800) showed significantly improved contrasts in both fluorescence and CT imaging and the signal intensity within the tumor retained for 24 h post-injection.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuxi C. Dong ◽  
Maryam Hajfathalian ◽  
Portia S. N. Maidment ◽  
Jessica C. Hsu ◽  
Pratap C. Naha ◽  
...  

Abstract Computed tomography (CT) is one of the most commonly used clinical imaging modalities. There have recently been many reports of novel contrast agents for CT imaging. In particular, the development of gold nanoparticles (AuNP) as CT contrast agents is a topic of intense interest. AuNP have favorable characteristics for this application such as high payloads of contrast generating material, strong X-ray attenuation, excellent biocompatibility, tailorable surface chemistry, and tunable sizes and shapes. However, there have been conflicting reports on the role of AuNP size on their contrast generation for CT. We therefore sought to extensively investigate the AuNP size-CT contrast relationship. In order to do this, we synthesized AuNP with sizes ranging from 4 to 152 nm and capped them with 5 kDa m-PEG. The contrast generation of AuNP of different sizes was investigated with three clinical CT, a spectral photon counting CT (SPCCT) and two micro CT systems. X-ray attenuation was quantified as attenuation rate in Hounsfield units per unit concentration (HU/mM). No statistically significant difference in CT contrast generation was found among different AuNP sizes via phantom imaging with any of the systems tested. Furthermore, in vivo imaging was performed in mice to provide insight into the effect of AuNP size on animal biodistribution at CT dose levels, which has not previously been explored. Both in vivo imaging and ex vivo analysis with inductively coupled plasma optical emission spectroscopy (ICP-OES) indicated that AuNP that are 15 nm or smaller have long blood circulation times, while larger AuNP accumulated in the liver and spleen more rapidly. Therefore, while we observed no AuNP size effect on CT contrast generation, there is a significant effect of size on AuNP diagnostic utility.


2020 ◽  
Vol 1219 ◽  
pp. 128599 ◽  
Author(s):  
Naim Aslan ◽  
Burhan Ceylan ◽  
Mümin Mehmet Koç ◽  
Fehim Findik

2014 ◽  
Vol 34 (3) ◽  
pp. 267-271
Author(s):  
Wei-Hung Liu ◽  
Yang-Kao Wang ◽  
Chi-Chang Wu ◽  
Win-Pin Deng ◽  
Kuang-Hsun Lin ◽  
...  

Abstract X-ray computed tomography (CT) is one of the most powerful non-invasive diagnostic techniques nowadays. The iodinated molecules used as CT contrast agents in the clinic have short circulation times in the body, which significantly restrict its applications. Furthermore, some patients are hypersensitive to iodine. So, researchers have made tremendous efforts to improve the property of iodine. Besides, cis-diammineplatinum (II) dichloride (cisplatin), a major chemo agent for cancer treatment, possess higher X-ray attenuation coefficient being a CT contrast agent. The incorporation of cisplatin with an iodinated agent could facilitate the quality of CT images and damage cancer cells simultaneously. To reduce toxicity of a contrast agent, polymer matrix, gelatin, was incorporated for avoiding contact with nontarget cells. In this study, we combined the iodine contrast agent, 1,3-N-bis (2,3-dihydroxypropyl)-5-[N-(2,3-dihydroxypropyl)acetamido]-2,4,6-triiodobenzene-1,3-dicarboxamide (iohexol), with cisplatin, and then examined them in a micro CT with different X-ray tube voltages (50 kV, 80 kV, 100 kV) to find optimal scanning conditions for imaging. As expected, iohexol combined with cisplatin enhanced X-ray attenuation and image contrast. The optimal CT image could be acquired at iohexol and cisplatin concentrations of 50 mg/ml and 3 mg/ml, respectively, under 80 kV irradiation. Finally, the iohexol-cisplatin-gelatin solution was then fabricated into nanoparticles of sizes about 240 nm, which may suitable for in vivo delivery.


2015 ◽  
Vol 39 (1) ◽  
pp. 589-594 ◽  
Author(s):  
Zhaogui Ba ◽  
Yumin Zhang ◽  
Junpei Wei ◽  
Jiwu Han ◽  
Zhenqiang Wang ◽  
...  

PEGylated lutetium hydroxycarbonate nanoparticles have been prepared via a large-scale strategy and successfully used as high-performance contrast agents for X-ray computed tomography imaging with neglectable systemic toxicity.


2014 ◽  
Vol 2 (22) ◽  
pp. 3519-3530 ◽  
Author(s):  
Gaurav Lalwani ◽  
Joe Livingston Sundararaj ◽  
Kenneth Schaefer ◽  
Terry Button ◽  
Balaji Sitharaman

Development of a novel graphene-based multimodal MRI-CT contrast agent.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Petri Paakkari ◽  
Satu I. Inkinen ◽  
Miitu K. M. Honkanen ◽  
Mithilesh Prakash ◽  
Rubina Shaikh ◽  
...  

AbstractPhoton-counting detector computed tomography (PCD-CT) is a modern spectral imaging technique utilizing photon-counting detectors (PCDs). PCDs detect individual photons and classify them into fixed energy bins, thus enabling energy selective imaging, contrary to energy integrating detectors that detects and sums the total energy from all photons during acquisition. The structure and composition of the articular cartilage cannot be detected with native CT imaging but can be assessed using contrast-enhancement. Spectral imaging allows simultaneous decomposition of multiple contrast agents, which can be used to target and highlight discrete cartilage properties. Here we report, for the first time, the use of PCD-CT to quantify a cationic iodinated CA4+ (targeting proteoglycans) and a non-ionic gadolinium-based gadoteridol (reflecting water content) contrast agents inside human osteochondral tissue (n = 53). We performed PCD-CT scanning at diffusion equilibrium and compared the results against reference data of biomechanical and optical density measurements, and Mankin scoring. PCD-CT enables simultaneous quantification of the two contrast agent concentrations inside cartilage and the results correlate with the structural and functional reference parameters. With improved soft tissue contrast and assessment of proteoglycan and water contents, PCD-CT with the dual contrast agent method is of potential use for the detection and monitoring of osteoarthritis.


2019 ◽  
Vol 2 (3) ◽  
pp. 1197-1203 ◽  
Author(s):  
Lee Robison ◽  
Lin Zhang ◽  
Riki J. Drout ◽  
Peng Li ◽  
Chad R. Haney ◽  
...  

Author(s):  
Seongwook Choi ◽  
Sinyoung Park ◽  
Jung-Joon Min ◽  
Changho Lee ◽  
Chulhong Kim

Sign in / Sign up

Export Citation Format

Share Document