scholarly journals Effects of non-driving related tasks on mental workload and take-over times during conditional automated driving

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Andreas Lars Müller ◽  
Natacha Fernandes-Estrela ◽  
Ruben Hetfleisch ◽  
Lukas Zecha ◽  
Bettina Abendroth

Abstract Background Automated driving will be of high value in the future. While in partial-automated driving the driver must always monitor the traffic situation, a paradigm shift is taking place in the case of conditional automated driving (Level 3 according to SAE). From this level of automation onwards, the vehicle user is released from permanent vehicle control and environmental monitoring and is allowed to engage in Non-Driving Related Tasks (NDRT) in his or her newly gained spare time. These tasks can be performed until a take-over request informs the user to resume vehicle control. As the driver is still considered to be the fall-back level, this aspect of taking over control is considered especially critical. Methods While previous research projects have focused their studies on the factors influencing the take-over request, this paper focuses on the effects of NDRT on the user of the vehicle during conditional automated driving, especially on the human workload. NDRT (such as Reading, Listening, Watching a movie, Texting and Monitoring ride) were examined within a static driving simulator at the Institute of Ergonomics & Human Factors with 56 participants in an urban environment. These NDRT were tested for mental workload and the ability to take over in a critical situation. To determine the perceived workload, the subjective workload, psychophysiological activity as well as performance-based parameters of a secondary competing task performed by a were used. Results This study revealed that the selected NDRT vary significantly in their mental workload and that the workload correlates with the length of the time needed for take over control. NDRT which are associated with a high workload (such as Reading or Texting) also lead to longer reaction times.

Author(s):  
Wyatt McManus ◽  
Jing Chen

Modern surface transportation vehicles often include different levels of automation. Higher automation levels have the potential to impact surface transportation in unforeseen ways. For example, connected vehicles with higher levels of automation are at a higher risk for hacking attempts, because automated driving assistance systems often rely on onboard sensors and internet connectivity (Amoozadeh et al., 2015). As the automation level of vehicle control rises, it is necessary to examine the effect different levels of automation have on the driver-vehicle interactions. While research into the effect of automation level on driver-vehicle interactions is growing, research into how automation level affects driver’s responses to vehicle hacking attempts is very limited. In addition, auditory warnings have been shown to effectively attract a driver’s attention while performing a driving task, which is often visually demanding (Baldwin, 2011; Petermeijer, Doubek, & de Winter, 2017). An auditory warning can be either speech-based containing sematic information (e.g., “car in blind spot”) or non-sematic (e.g., a tone, or an earcon), which can influence driver behaviors differently (Sabic, Mishler, Chen, & Hu, 2017). The purpose of the current study was to examine the effect of level of automation and warning type on driver responses to novel critical events, using vehicle hacking attempts as a concrete example, in a driving simulator. The current study compared how level of automation (manual vs. automated) and warning type (non-semantic vs. semantic) affected drivers’ responses to a vehicle hacking attempt using time to collision (TTC) values, maximum steering wheel angle, number of successful responses, and other measures of response. A full factorial between-subjects design with the two factors made four conditions (Manual Semantic, Manual Non-Semantic, Automated Semantic, and Automated Non-Semantic). Seventy-two participants recruited using SONA ( odupsychology.sona-systems.com ) completed two simulated drives to school in a driving simulator. The first drive ended with the participant safely arriving at school. A two-second warning was presented to the participants three quarters of the way through the second drive and was immediately followed by a simulated vehicle hacking attempt. The warning either stated “Danger, hacking attempt incoming” in the semantic conditions or was a 500 Hz sine tone in the non-semantic conditions. The hacking attempt lasted five seconds before simulating a crash into a vehicle and ending the simulation if no intervention by the driver occurred. Our results revealed no significant effect of level of automation or warning type on TTC or successful response rate. However, there was a significant effect of level of automation on maximum steering wheel angle. This is a measure of response quality (Shen & Neyens, 2017), such that manual drivers had safer responses to the hacking attempt with smaller maximum steering wheel angles. In addition, an effect of warning type that approached significance was also found for maximum steering wheel angle such that participants who received a semantic warning had more severe and dangerous responses to the hacking attempt. The TTC and successful response results from the current experiment do not match those in the previous literature. The null results were potentially due to the warning implementation time and the complexity of the vehicle hacking attempt. In contrast, the maximum steering wheel angle results indicated that level of automation and warning type affected the safety and severity of the participants’ responses to the vehicle hacking attempt. This suggests that both factors may influence responses to hacking attempts in some capacity. Further research will be required to determine if level of automation and warning type affect participants ability to safely respond to vehicle hacking attempts. Acknowledgments. We are grateful to Scott Mishler for his assistance with STISIM programming and Faye Wakefield, Hannah Smith, and Pettie Perkins for their assistance in data collection.


2019 ◽  
Vol 11 (3) ◽  
pp. 40-58 ◽  
Author(s):  
Philipp Wintersberger ◽  
Clemens Schartmüller ◽  
Andreas Riener

Automated vehicles promise engagement in side activities, but demand drivers to resume vehicle control in Take-Over situations. This pattern of alternating tasks thus becomes an issue of sequential multitasking, and it is evident that random interruptions result in a performance drop and are further a source of stress/anxiety. To counteract such drawbacks, this article presents an attention-aware architecture for the integration of consumer devices in level-3/4 vehicles and traffic systems. The proposed solution can increase the lead time for transitions, which is useful to determine suitable timings (e.g., between tasks/subtasks) for interruptions in vehicles. Further, it allows responding to Take-Over-Requests directly on handheld devices in emergencies. Different aspects of the Attentive User Interface (AUI) concept were evaluated in two driving simulator studies. Results, mainly based on Take-Over performance and physiological measurements, confirm the positive effect of AUIs on safety and comfort. Consequently, AUIs should be implemented in future automated vehicles.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jaehyun Jason So ◽  
Sungho Park ◽  
Jonghwa Kim ◽  
Jejin Park ◽  
Ilsoo Yun

This study investigates the impacts of road traffic conditions and driver’s characteristics on the takeover time in automated vehicles using a driving simulator. Automated vehicles are barely expected to maintain their fully automated driving capability at all times based on the current technologies, and the automated vehicle system transfers the vehicle control to a driver when the system can no longer be automatically operated. The takeover time is the duration from when the driver requested the vehicle control transition from the automated vehicle system to when the driver takes full control of the vehicle. This study assumes that the takeover time can vary according to the driver’s characteristics and the road traffic conditions; the assessment is undertaken with various participants having different characteristics in various traffic volume conditions and road geometry conditions. To this end, 25 km of the northbound road section between Osan Interchange and Dongtan Junction on Gyeongbu Expressway in Korea is modeled in the driving simulator; the experiment participants are asked to drive the vehicle and take a response following a certain triggering event in the virtual driving environment. The results showed that the level of service and road curvature do not affect the takeover time itself, but they significantly affect the stabilization time, that is, a duration for a driver to become stable and recover to a normal state. Furthermore, age affected the takeover time, indicating that aged drivers are likely to slowly respond to a certain takeover situation, compared to the younger drivers. With these findings, this study emphasizes the importance of having effective countermeasures and driver interface to monitor drivers in the automated vehicle system; therefore, an early and effective alarm system to alert drivers for the vehicle takeover can secure enough time for stable recovery to manual driving and ultimately to achieve safety during the takeover.


2020 ◽  
Vol 4 (3) ◽  
pp. 36
Author(s):  
Tobias Hecht ◽  
Simon Danner ◽  
Alexander Feierle ◽  
Klaus Bengler

Current research in human factors and automated driving is increasingly focusing on predictable transitions instead of urgent and critical take-overs. Predictive human–machine interface (HMI) elements displaying the remaining time until the next request to intervene were identified as a user need, especially when the user is engaging in non-driving related activities (NDRA). However, these estimations are prone to errors due to changing traffic conditions and updated map-based information. Thus, we investigated a confidence display for Level 3 automated driving time estimations. Based on a preliminary study, a confidence display resembling a mobile phone connectivity symbol was developed. In a mixed-design driving simulator study with 32 participants, we assessed the impact of the confidence display concept (within factor) on usability, frustration, trust and acceptance during city and highway automated driving (between factor). During automated driving sections, participants engaged in a naturalistic visual NDRA to create a realistic scenario. Significant effects were found for the scenario: participants in the city experienced higher levels of frustration. However, the confidence display has no significant impact on the subjective evaluation and most participants preferred the baseline HMI without a confidence symbol.


2018 ◽  
Vol 1 (3) ◽  
pp. 99-106 ◽  
Author(s):  
Ryuichi Umeno ◽  
Makoto Itoh ◽  
Satoshi Kitazaki

Purpose Level 3 automated driving, which has been defined by the Society of Automotive Engineers, may cause driver drowsiness or lack of situation awareness, which can make it difficult for the driver to recognize where he/she is. Therefore, the purpose of this study was to conduct an experimental study with a driving simulator to investigate whether automated driving affects the driver’s own localization compared to manual driving. Design/methodology/approach Seventeen drivers were divided into the automated operation group and manual operation group. Drivers in each group were instructed to travel along the expressway and proceed to the specified destinations. The automated operation group was forced to select a course after receiving a Request to Intervene (RtI) from an automated driving system. Findings A driver who used the automated operation system tended to not take over the driving operation correctly when a lane change is immediately required after the RtI. Originality/value This is a fundamental research that examined how the automated driving operation affects the driver's own localization. The experimental results suggest that it is not enough to simply issue an RtI, and it is necessary to tell the driver what kind of circumstances he/she is in and what they should do next through the HMI. This conclusion can be taken into consideration for engineers who design automatic driving vehicles.


2019 ◽  
Vol 3 (2) ◽  
pp. 29 ◽  
Author(s):  
Yannick Forster ◽  
Sebastian Hergeth ◽  
Frederik Naujoks ◽  
Josef Krems ◽  
Andreas Keinath

The development of automated driving will profit from an agreed-upon methodology to evaluate human–machine interfaces. The present study examines the role of feedback on interaction performance provided directly to participants when interacting with driving automation (i.e., perceived ease of use). In addition, the development of ratings itself over time and use case specificity were examined. In a driving simulator study, N = 55 participants completed several transitions between Society of Automotive Engineers (SAE) level 0, level 2, and level 3 automated driving. One half of the participants received feedback on their interaction performance immediately after each use case, while the other half did not. As expected, the results revealed that participants judged the interactions to become easier over time. However, a use case specificity was present, as transitions to L0 did not show effects over time. The role of feedback also depended on the respective use case. We observed more conservative evaluations when feedback was provided than when it was not. The present study supports the application of perceived ease of use as a diagnostic measure in interaction with automated driving. Evaluations of interfaces can benefit from supporting feedback to obtain more conservative results.


2021 ◽  
Author(s):  
Esko Lehtonen ◽  
Johanna Wörle ◽  
Fanny Malin ◽  
Barbara Metz ◽  
Satu Innamaa

AbstractAutomated vehicles (AVs) are expected to change personal mobility in the near future. Most studies on the mobility impacts of AVs focus on fully automated (SAE L5) vehicles, but the gradual development of the technology will probably bring AVs with more limited capabilities to begin with. This stated-preference study focused on the potential mobility impacts of conditionally automated (L3) and highly automated cars (L4). We investigated personal mobility impacts among 59 participants who experienced automated driving repeatedly in a driving simulator. Half of them drove with an L3 and half with an L4 motorway function. After the first and final drive they answered questions on their travel experience and how automated vehicles could change their mobility. After the drives, participants in both groups were willing to accept 30–50% longer travel times for a 30 min trip if they did not need to drive the whole trip themselves. This translates into savings of around 30% for the perceived value of travel time on routes where automation is available. There were no statistically significant differences between L3 and L4 in the accepted travel times. Most participants did not expect to make more trips with automated cars, but around half of them anticipated making longer trips. The amount of car travel may increase more with L4 than with L3 automation, possibly due somewhat to changes in the experienced travel quality. The results suggest that the mobility impacts of automated driving may increase with a higher level of automation.


Author(s):  
Sandra Epple ◽  
Fabienne Roche ◽  
Stefan Brandenburg

Driving behavior after take-over requests (TORs) is one of the most popular subjects in human factors re-search on highly automated driving. Many studies utilized one-step TOR procedures to prompt drivers to resume vehicle control. The present paper examines driver behavior when experiencing a two-step TOR procedure in different modalities. A two-step TOR gives drivers a choice to resume vehicle controls be-tween a warning (first step) and an alarm (second step). Our findings indicate that a substantial number of drivers resumes vehicle controls after the second step, resulting in a higher number of crashes. More generally, criticality of the driving situation increases with increasing reaction times. Driving and interview data suggest that step two of the TOR should be presented earlier. Alternatively, a multi-step TOR could be used to increase drivers’ situational awareness. Auditory TORs are associated with shorter reaction times than visual-auditory TORs. Implications on TOR design are discussed.


Author(s):  
Giulio Bianchi Piccinini ◽  
Esko Lehtonen ◽  
Fabio Forcolin ◽  
Johan Engström ◽  
Deike Albers ◽  
...  

Objective This paper aims to describe and test novel computational driver models, predicting drivers’ brake reaction times (BRTs) to different levels of lead vehicle braking, during driving with cruise control (CC) and during silent failures of adaptive cruise control (ACC). Background Validated computational models predicting BRTs to silent failures of automation are lacking but are important for assessing the safety benefits of automated driving. Method Two alternative models of driver response to silent ACC failures are proposed: a looming prediction model, assuming that drivers embody a generative model of ACC, and a lower gain model, assuming that drivers’ arousal decreases due to monitoring of the automated system. Predictions of BRTs issued by the models were tested using a driving simulator study. Results The driving simulator study confirmed the predictions of the models: (a) BRTs were significantly shorter with an increase in kinematic criticality, both during driving with CC and during driving with ACC; (b) BRTs were significantly delayed when driving with ACC compared with driving with CC. However, the predicted BRTs were longer than the ones observed, entailing a fitting of the models to the data from the study. Conclusion Both the looming prediction model and the lower gain model predict well the BRTs for the ACC driving condition. However, the looming prediction model has the advantage of being able to predict average BRTs using the exact same parameters as the model fitted to the CC driving data. Application Knowledge resulting from this research can be helpful for assessing the safety benefits of automated driving.


Sign in / Sign up

Export Citation Format

Share Document