scholarly journals InstantDL: an easy-to-use deep learning pipeline for image segmentation and classification

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Dominik Jens Elias Waibel ◽  
Sayedali Shetab Boushehri ◽  
Carsten Marr

Abstract Background Deep learning contributes to uncovering molecular and cellular processes with highly performant algorithms. Convolutional neural networks have become the state-of-the-art tool to provide accurate and fast image data processing. However, published algorithms mostly solve only one specific problem and they typically require a considerable coding effort and machine learning background for their application. Results We have thus developed InstantDL, a deep learning pipeline for four common image processing tasks: semantic segmentation, instance segmentation, pixel-wise regression and classification. InstantDL enables researchers with a basic computational background to apply debugged and benchmarked state-of-the-art deep learning algorithms to their own data with minimal effort. To make the pipeline robust, we have automated and standardized workflows and extensively tested it in different scenarios. Moreover, it allows assessing the uncertainty of predictions. We have benchmarked InstantDL on seven publicly available datasets achieving competitive performance without any parameter tuning. For customization of the pipeline to specific tasks, all code is easily accessible and well documented. Conclusions With InstantDL, we hope to empower biomedical researchers to conduct reproducible image processing with a convenient and easy-to-use pipeline.

2020 ◽  
Author(s):  
Dominik Waibel ◽  
Sayedali Shetab Boushehri ◽  
Carsten Marr

AbstractMotivationDeep learning contributes to uncovering and understanding molecular and cellular processes with highly performant image computing algorithms. Convolutional neural networks have become the state-of-the-art tool to provide accurate, consistent and fast data processing. However, published algorithms mostly solve only one specific problem and they often require expert skills and a considerable computer science and machine learning background for application.ResultsWe have thus developed a deep learning pipeline called InstantDL for four common image processing tasks: semantic segmentation, instance segmentation, pixel-wise regression and classification. InstantDL enables experts and non-experts to apply state-of-the-art deep learning algorithms to biomedical image data with minimal effort. To make the pipeline robust, we have automated and standardized workflows and extensively tested it in different scenarios. Moreover, it allows to assess the uncertainty of predictions. We have benchmarked InstantDL on seven publicly available datasets achieving competitive performance without any parameter tuning. For customization of the pipeline to specific tasks, all code is easily accessible.Availability and ImplementationInstantDL is available under the terms of MIT licence. It can be found on GitHub: https://github.com/marrlab/[email protected]


2021 ◽  
Vol 13 (24) ◽  
pp. 5100
Author(s):  
Teerapong Panboonyuen ◽  
Kulsawasd Jitkajornwanich ◽  
Siam Lawawirojwong ◽  
Panu Srestasathiern ◽  
Peerapon Vateekul

Transformers have demonstrated remarkable accomplishments in several natural language processing (NLP) tasks as well as image processing tasks. Herein, we present a deep-learning (DL) model that is capable of improving the semantic segmentation network in two ways. First, utilizing the pre-training Swin Transformer (SwinTF) under Vision Transformer (ViT) as a backbone, the model weights downstream tasks by joining task layers upon the pretrained encoder. Secondly, decoder designs are applied to our DL network with three decoder designs, U-Net, pyramid scene parsing (PSP) network, and feature pyramid network (FPN), to perform pixel-level segmentation. The results are compared with other image labeling state of the art (SOTA) methods, such as global convolutional network (GCN) and ViT. Extensive experiments show that our Swin Transformer (SwinTF) with decoder designs reached a new state of the art on the Thailand Isan Landsat-8 corpus (89.8% F1 score), Thailand North Landsat-8 corpus (63.12% F1 score), and competitive results on ISPRS Vaihingen. Moreover, both our best-proposed methods (SwinTF-PSP and SwinTF-FPN) even outperformed SwinTF with supervised pre-training ViT on the ImageNet-1K in the Thailand, Landsat-8, and ISPRS Vaihingen corpora.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1716
Author(s):  
Julius Großkopf ◽  
Jörg Matthes ◽  
Markus Vogelbacher ◽  
Patrick Waibel

The energetic usage of fuels from renewable sources or waste material is associated with controlled combustion processes with industrial burner equipment. For the observation of such processes, camera systems are increasingly being used. With additional completion by an appropriate image processing system, camera observation of controlled combustion can be used for closed-loop process control giving leverage for optimization and more efficient usage of fuels. A key element of a camera-based control system is the robust segmentation of each burners flame. However, flame instance segmentation in an industrial environment imposes specific problems for image processing, such as overlapping flames, blurry object borders, occlusion, and irregular image content. In this research, we investigate the capability of a deep learning approach for the instance segmentation of industrial burner flames based on example image data from a special waste incineration plant. We evaluate the segmentation quality and robustness in challenging situations with several convolutional neural networks and demonstrate that a deep learning-based approach is capable of producing satisfying results for instance segmentation in an industrial environment.


2018 ◽  
Author(s):  
Yuta Tokuoka ◽  
Takahiro G Yamada ◽  
Noriko F Hiroi ◽  
Tetsuya J Kobayashi ◽  
Kazuo Yamagata ◽  
...  

AbstractIn embryology, image processing methods such as segmentation are applied to acquiring quantitative criteria from time-series three-dimensional microscopic images. When used to segment cells or intracellular organelles, several current deep learning techniques outperform traditional image processing algorithms. However, segmentation algorithms still have unsolved problems, especially in bioimage processing. The most critical issue is that the existing deep learning-based algorithms for bioimages can perform only semantic segmentation, which distinguishes whether a pixel is within an object (for example, nucleus) or not. In this study, we implemented a novel segmentation algorithm, based on deep learning, which segments each nucleus and adds different labels to the detected objects. This segmentation algorithm is called instance segmentation. Our instance segmentation algorithm, implemented as a neural network, which we named QCA Net, substantially outperformed 3D U-Net, which is the best semantic segmentation algorithm that uses deep learning. Using QCA Net, we quantified the nuclear number, volume, surface area, and center of gravity coordinates during the development of mouse embryos. In particular, QCA Net distinguished nuclei of embryonic cells from those of polar bodies formed in meiosis. We consider that QCA Net can greatly contribute to bioimage segmentation in embryology by generating quantitative criteria from segmented images.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3800
Author(s):  
Sebastian Krapf ◽  
Nils Kemmerzell ◽  
Syed Khawaja Haseeb Khawaja Haseeb Uddin ◽  
Manuel Hack Hack Vázquez ◽  
Fabian Netzler ◽  
...  

Roof-mounted photovoltaic systems play a critical role in the global transition to renewable energy generation. An analysis of roof photovoltaic potential is an important tool for supporting decision-making and for accelerating new installations. State of the art uses 3D data to conduct potential analyses with high spatial resolution, limiting the study area to places with available 3D data. Recent advances in deep learning allow the required roof information from aerial images to be extracted. Furthermore, most publications consider the technical photovoltaic potential, and only a few publications determine the photovoltaic economic potential. Therefore, this paper extends state of the art by proposing and applying a methodology for scalable economic photovoltaic potential analysis using aerial images and deep learning. Two convolutional neural networks are trained for semantic segmentation of roof segments and superstructures and achieve an Intersection over Union values of 0.84 and 0.64, respectively. We calculated the internal rate of return of each roof segment for 71 buildings in a small study area. A comparison of this paper’s methodology with a 3D-based analysis discusses its benefits and disadvantages. The proposed methodology uses only publicly available data and is potentially scalable to the global level. However, this poses a variety of research challenges and opportunities, which are summarized with a focus on the application of deep learning, economic photovoltaic potential analysis, and energy system analysis.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 967
Author(s):  
Amirreza Mahbod ◽  
Gerald Schaefer ◽  
Christine Löw ◽  
Georg Dorffner ◽  
Rupert Ecker ◽  
...  

Nuclei instance segmentation can be considered as a key point in the computer-mediated analysis of histological fluorescence-stained (FS) images. Many computer-assisted approaches have been proposed for this task, and among them, supervised deep learning (DL) methods deliver the best performances. An important criterion that can affect the DL-based nuclei instance segmentation performance of FS images is the utilised image bit depth, but to our knowledge, no study has been conducted so far to investigate this impact. In this work, we released a fully annotated FS histological image dataset of nuclei at different image magnifications and from five different mouse organs. Moreover, by different pre-processing techniques and using one of the state-of-the-art DL-based methods, we investigated the impact of image bit depth (i.e., eight bits vs. sixteen bits) on the nuclei instance segmentation performance. The results obtained from our dataset and another publicly available dataset showed very competitive nuclei instance segmentation performances for the models trained with 8 bit and 16 bit images. This suggested that processing 8 bit images is sufficient for nuclei instance segmentation of FS images in most cases. The dataset including the raw image patches, as well as the corresponding segmentation masks is publicly available in the published GitHub repository.


2018 ◽  
Author(s):  
Alexey A. Shvets ◽  
Alexander Rakhlin ◽  
Alexandr A. Kalinin ◽  
Vladimir I. Iglovikov

AbstractSemantic segmentation of robotic instruments is an important problem for the robot-assisted surgery. One of the main challenges is to correctly detect an instrument’s position for the tracking and pose estimation in the vicinity of surgical scenes. Accurate pixel-wise instrument segmentation is needed to address this challenge. In this paper we describe our deep learning-based approach for robotic instrument segmentation. Our approach demonstrates an improvement over the state-of-the-art results using several novel deep neural network architectures. It addressed the binary segmentation problem, where every pixel in an image is labeled as an instrument or background from the surgery video feed. In addition, we solve a multi-class segmentation problem, in which we distinguish between different instruments or different parts of an instrument from the background. In this setting, our approach outperforms other methods for automatic instrument segmentation thereby providing state-of-the-art results for these problems. The source code for our solution is made publicly available.


2019 ◽  
Vol 11 (6) ◽  
pp. 684 ◽  
Author(s):  
Maria Papadomanolaki ◽  
Maria Vakalopoulou ◽  
Konstantinos Karantzalos

Deep learning architectures have received much attention in recent years demonstrating state-of-the-art performance in several segmentation, classification and other computer vision tasks. Most of these deep networks are based on either convolutional or fully convolutional architectures. In this paper, we propose a novel object-based deep-learning framework for semantic segmentation in very high-resolution satellite data. In particular, we exploit object-based priors integrated into a fully convolutional neural network by incorporating an anisotropic diffusion data preprocessing step and an additional loss term during the training process. Under this constrained framework, the goal is to enforce pixels that belong to the same object to be classified at the same semantic category. We compared thoroughly the novel object-based framework with the currently dominating convolutional and fully convolutional deep networks. In particular, numerous experiments were conducted on the publicly available ISPRS WGII/4 benchmark datasets, namely Vaihingen and Potsdam, for validation and inter-comparison based on a variety of metrics. Quantitatively, experimental results indicate that, overall, the proposed object-based framework slightly outperformed the current state-of-the-art fully convolutional networks by more than 1% in terms of overall accuracy, while intersection over union results are improved for all semantic categories. Qualitatively, man-made classes with more strict geometry such as buildings were the ones that benefit most from our method, especially along object boundaries, highlighting the great potential of the developed approach.


Author(s):  
S. T. Yekeen ◽  
A.-L. Balogun

Abstract. This study developed a novel deep learning oil spill instance segmentation model using Mask-Region-based Convolutional Neural Network (Mask R-CNN) model which is a state-of-the-art computer vision model. A total of 2882 imageries containing oil spill, look-alike, ship, and land area after conducting different pre-processing activities were acquired. These images were subsequently sub-divided into 88% training and 12% for testing, equating to 2530 and 352 images respectively. The model training was conducted using transfer learning on a pre-trained ResNet 101 with COCO data as a backbone in combination with Feature Pyramid Network (FPN) architecture for the extraction of features at 30 epochs with 0.001 learning rate. The model’s performance was evaluated using precision, recall, and F1-measure which shows a higher performance than other existing models with value of 0.964, 0.969 and 0.968 respectively. As a specialized task, the study concluded that the developed deep learning instance segmentation model (Mask R-CNN) performs better than conventional machine learning models and semantic segmentation deep learning models in detection and segmentation of marine oil spill.


Sign in / Sign up

Export Citation Format

Share Document