scholarly journals Finding functional associations between prokaryotic virus orthologous groups: a proof of concept

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Nikolaos Pappas ◽  
Bas E. Dutilh

Abstract Background The field of viromics has greatly benefited from recent developments in metagenomics, with significant efforts focusing on viral discovery. However, functional annotation of the increasing number of viral genomes is lagging behind. This is highlighted by the degree of annotation of the protein clusters in the prokaryotic Virus Orthologous Groups (pVOGs) database, with 83% of its current 9518 pVOGs having an unknown function. Results In this study we describe a machine learning approach to explore potential functional associations between pVOGs. We measure seven genomic features and use them as input to a Random Forest classifier to predict protein–protein interactions between pairs of pVOGs. After systematic evaluation of the model’s performance on 10 different datasets, we obtained a predictor with a mean accuracy of 0.77 and Area Under Receiving Operation Characteristic (AUROC) score of 0.83. Its application to a set of 2,133,027 pVOG-pVOG interactions allowed us to predict 267,265 putative interactions with a reported probability greater than 0.65. At an expected false discovery rate of 0.27, we placed 95.6% of the previously unannotated pVOGs in a functional context, by predicting their interaction with a pVOG that is functionally annotated. Conclusions We believe that this proof-of-concept methodology, wrapped in a reproducible and automated workflow, can represent a significant step towards obtaining a more complete picture of bacteriophage biology.

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1864
Author(s):  
Isabel Pagani ◽  
Guido Poli ◽  
Elisa Vicenzi

Viral invasion of target cells triggers an immediate intracellular host defense system aimed at preventing further propagation of the virus. Viral genomes or early products of viral replication are sensed by a number of pattern recognition receptors, leading to the synthesis and production of type I interferons (IFNs) that, in turn, activate a cascade of IFN-stimulated genes (ISGs) with antiviral functions. Among these, several members of the tripartite motif (TRIM) family are antiviral executors. This article will focus, in particular, on TRIM22 as an example of a multitarget antiviral member of the TRIM family. The antiviral activities of TRIM22 against different DNA and RNA viruses, particularly human immunodeficiency virus type 1 (HIV-1) and influenza A virus (IAV), will be discussed. TRIM22 restriction of virus replication can involve either direct interaction of TRIM22 E3 ubiquitin ligase activity with viral proteins, or indirect protein–protein interactions resulting in control of viral gene transcription, but also epigenetic effects exerted at the chromatin level.


2016 ◽  
Vol 113 (52) ◽  
pp. 15018-15023 ◽  
Author(s):  
Juan Rodriguez-Rivas ◽  
Simone Marsili ◽  
David Juan ◽  
Alfonso Valencia

Protein–protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein–protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein–protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein–protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach.


2019 ◽  
Author(s):  
Jennifer A. Miles ◽  
Fruzsina Hobor ◽  
James Taylor ◽  
Christian Tiede ◽  
Philip R. Rowell ◽  
...  

AbstractThe BCL-2 family is a challenging set of proteins to target selectively due to sequence and structural homologies across the family. Selective ligands for the BCL-2 family regulators of apoptosis are desirable as probes to understand cell biology and apoptotic signalling pathways, and as starting points for inhibitor design. We have used phage display to isolate Affimer reagents (non-antibody binding proteins based on a conserved scaffold) to identify ligands for MCL-1, BCL-xL, BCL-2, BAK and BAX, then used multiple biophysical characterisation methods to probe the interactions. We established that purified Affimers elicit selective and potent recognition of their target BCL-2 protein. For anti-apoptotic targets, competitive inhibition of their canonical protein-protein interactions is demonstrated. Co-crystal structures reveal an unprecedented mode of molecular recognition; where a BH3 helix is normally bound, flexible loops from the Affimer dock into the BH3 binding cleft. Moreover, the Affimers induce a change in the target proteins towards a desirable drug bound like conformation. These results indicate Affimers can be used as alternative templates to inspire design of selective BCL-2 family modulators, and provide proof-of-concept for the elaboration of selective non-antibody binding reagents for use in cell-biology applications.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 78 ◽  
Author(s):  
Esther Stoeckli

During neural circuit formation, axons need to navigate to their target cells in a complex, constantly changing environment. Although we most likely have identified most axon guidance cues and their receptors, we still cannot explain the molecular background of pathfinding for any subpopulation of axons. We lack mechanistic insight into the regulation of interactions between guidance receptors and their ligands. Recent developments in the field of axon guidance suggest that the regulation of surface expression of guidance receptors comprises transcriptional, translational, and post-translational mechanisms, such as trafficking of vesicles with specific cargos, protein-protein interactions, and specific proteolysis of guidance receptors. Not only axon guidance molecules but also the regulatory mechanisms that control their spatial and temporal expression are involved in synaptogenesis and synaptic plasticity. Therefore, it is not surprising that genes associated with axon guidance are frequently found in genetic and genomic studies of neurodevelopmental disorders.


2020 ◽  
Author(s):  
Swantje Lenz ◽  
Ludwig R. Sinn ◽  
Francis J. O’Reilly ◽  
Lutz Fischer ◽  
Fritz Wegner ◽  
...  

Crosslinking mass spectrometry is widening its scope from structural analyzes of purified multi-protein complexes towards systems-wide analyzes of protein-protein interactions. Assessing the error in these large datasets is currently a challenge. Using a controlled large-scale analysis of Escherichia coli cell lysate, we demonstrate a reliable false-discovery rate estimation procedure for protein-protein interactions identified by crosslinking mass spectrometry.


2020 ◽  
Vol 117 (11) ◽  
pp. 6121-6128 ◽  
Author(s):  
Pengwei Zhang ◽  
Ruben Moreno ◽  
Paul F. Lambert ◽  
Daniel DiMaio

Virus replication requires critical interactions between viral proteins and cellular proteins that mediate many aspects of infection, including the transport of viral genomes to the site of replication. In human papillomavirus (HPV) infection, the cellular protein complex known as retromer binds to the L2 capsid protein and sorts incoming virions into the retrograde transport pathway for trafficking to the nucleus. Here, we show that short synthetic peptides containing the HPV16 L2 retromer-binding site and a cell-penetrating sequence enter cells, sequester retromer from the incoming HPV pseudovirus, and inhibit HPV exit from the endosome, resulting in loss of viral components from cells and in a profound, dose-dependent block to infection. The peptide also inhibits cervicovaginal HPV16 pseudovirus infection in a mouse model. These results confirm the retromer-mediated model of retrograde HPV entry and validate intracellular virus trafficking as an antiviral target. More generally, inhibiting virus replication with agents that can enter cells and disrupt essential protein-protein interactions may be applicable in broad outline to many viruses.


2017 ◽  
Vol 13 ◽  
pp. 2842-2853 ◽  
Author(s):  
Yaochun Xu ◽  
Isabelle Correia ◽  
Tap Ha-Duong ◽  
Nadjib Kihal ◽  
Jean-Louis Soulier ◽  
...  

Pentapeptides having the sequence R-HN-Ala-Val-X-Val-Leu-OMe, where the central residue X is L-serine, L-threonine, (2S,3R)-L-CF3-threonine and (2S,3S)-L-CF3-threonine were prepared. The capacity of (2S,3S)- and (2S,3R)-CF3-threonine analogues to stabilize an extended structure when introduced in the central position of pentapeptides is demonstrated by NMR conformational studies and molecular dynamics simulations. CF3-threonine containing pentapeptides are more prone to mimic β-strands than their natural Ser and Thr pentapeptide analogues. The proof of concept that these fluorinated β-strand mimics are able to disrupt protein–protein interactions involving β-sheet structures is provided. The CF3-threonine containing pentapeptides interact with the amyloid peptide Aβ1-42 in order to reduce the protein–protein interactions mediating its aggregation process.


Sign in / Sign up

Export Citation Format

Share Document