scholarly journals Annotation depth confounds direct comparison of gene expression across species

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Elias Oziolor ◽  
Seda Arat ◽  
Matthew Martin

Abstract Background Comparisons of the molecular framework among organisms can be done on both structural and functional levels. One of the most common top-down approaches for functional comparisons is RNA sequencing. This estimation of organismal transcriptional responses is of interest for understanding evolution of molecular activity, which is used for answering a diversity of questions ranging from basic biology to pre-clinical species selection and translation. However, direct comparison between species is often hindered by evolutionary divergence in structure of molecular framework, as well as large difference in the depth of our understanding of the genetic background between humans and other species. Here, we focus on the latter. We attempt to understand how differences in transcriptome annotation affect direct gene abundance comparisons between species. Results We examine and suggest some straightforward approaches for direct comparison given the current available tools and using a sample dataset from human, cynomolgus monkey, dog, rat and mouse with a common quantitation and normalization approach. In addition, we examine how variation in genome annotation depth and quality across species may affect these direct comparisons. Conclusions Our findings suggest that further efforts for better genome annotation or computational normalization tools may be of strong interest.

FACETS ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 79-102 ◽  
Author(s):  
Angela L. Shamchuk ◽  
Brian J. Blunt ◽  
Danielle D. Lyons ◽  
Mo Qi Wang ◽  
Anastasia Gasheva ◽  
...  

The sensory system of animals detects a massive and unknown array of chemical cues that evoke a diversity of physiological and behavioural responses. One group of nitrogen-containing carbon ring chemicals—nucleobases—are thought to be involved in numerous behaviours yet have received little attention. We took a top-down approach to examine responses evoked by nucleobases at behavioural, tissue, and gene expression levels. Fish generally avoided nucleobases, and this behaviour, when observed, was driven by purines but not pyrimidines. At the tissue level, olfactory neuron generator potential responses tended to be concentration specific and robust at concentrations lower than amino acid detection ranges. In terms of gene expression, more than 2000 genes were significantly upregulated following nucleobase exposure, some of which were expected (e.g., genes involved in purine binding) and some of which were not (e.g., tubulin-related genes). Humanized RNA pathway analysis showed that we had exposed the animal to a nucleobase. Our data indicate that responses to nucleobase-containing compounds may be highly structure based and are evident from changes in behaviour to mRNA expression. Many of these responses were surprising, and all provide numerous routes for further research endeavour.


2004 ◽  
Vol 5 (2) ◽  
pp. 191-197 ◽  
Author(s):  
Holger Winter ◽  
Kerstin Korn ◽  
Rudolf Rigler

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mark G. Sterken ◽  
Marijke H. van Wijk ◽  
Elizabeth C. Quamme ◽  
Joost A. G. Riksen ◽  
Lucinda Carnell ◽  
...  

AbstractEthanol-induced transcriptional changes underlie important physiological responses to ethanol that are likely to contribute to the addictive properties of the drug. We examined the transcriptional responses of Caenorhabditis elegans across a timecourse of ethanol exposure, between 30 min and 8 h, to determine what genes and genetic pathways are regulated in response to ethanol in this model. We found that short exposures to ethanol (up to 2 h) induced expression of metabolic enzymes involved in metabolizing ethanol and retinol, while longer exposure (8 h) had much more profound effects on the transcriptome. Several genes that are known to be involved in the physiological response to ethanol, including direct ethanol targets, were regulated at 8 h of exposure. This longer exposure to ethanol also resulted in the regulation of genes involved in cilia function, which is consistent with an important role for the effects of ethanol on cilia in the deleterious effects of chronic ethanol consumption in humans. Finally, we found that food deprivation for an 8-h period induced gene expression changes that were somewhat ameliorated by the presence of ethanol, supporting previous observations that worms can use ethanol as a calorie source.


2007 ◽  
Vol 75 (12) ◽  
pp. 5640-5650 ◽  
Author(s):  
Sean Y. Kassim ◽  
Sina A. Gharib ◽  
Brigham H. Mecham ◽  
Timothy P. Birkland ◽  
William C. Parks ◽  
...  

ABSTRACT Airway epithelium is the initial point of host-pathogen interaction in Pseudomonas aeruginosa infection, an important pathogen in cystic fibrosis and nosocomial pneumonia. We used global gene expression analysis to determine airway epithelial transcriptional responses dependent on matrilysin (matrix metalloproteinase 7 [MMP-7]) and stromelysin-2 (MMP-10), two MMPs induced by acute P. aeruginosa pulmonary infection. Extraction of differential gene expression (EDGE) analysis of gene expression changes in P. aeruginosa-infected organotypic tracheal epithelial cell cultures from wild-type, Mmp7 −/−, and Mmp10 −/− mice identified 2,091 matrilysin-dependent and 1,628 stromelysin-2-dependent genes that were differentially expressed. Key node network analysis showed that these MMPs controlled distinct gene expression programs involved in proliferation, cell death, immune responses, and signal transduction, among other host defense processes. Our results demonstrate discrete roles for these MMPs in regulating epithelial responses to Pseudomonas infection and show that a global genomics strategy can be used to assess MMP function.


Author(s):  
Ingrid M. Lönnstedt ◽  
Sven Nelander

AbstractThe systematic study of transcriptional responses to genetic and chemical perturbations in human cells is still in its early stages. The largest available dataset to date is the newly released L1000 compendium. With its 1.3 million gene expression profiles of treated human cells it offers many opportunities for biomedical data mining, but also data normalization challenges of new dimensions. We developed a novel and practical approach to obtain accurate estimates of fold change response profiles from L1000, based on the RUV (Remove Unwanted Variation) statistical framework. Extending RUV to a big data setting, we propose an estimation procedure, in which an underlying RUV model is tuned by feedback through dataset specific statistical measures, reflecting


2019 ◽  
Author(s):  
Adelaide Tovar ◽  
Gregory J. Smith ◽  
Joseph M. Thomas ◽  
Jack R. Harkema ◽  
Samir N. P. Kelada

AbstractExposure to ambient ozone (O3) pollution causes airway inflammation, epithelial injury, and decreased lung function. Long-term exposure is associated with increased mortality and exacerbations of respiratory conditions. While the adverse health effects of O3 exposure have been thoroughly described, less is known about the molecular processes that drive these outcomes. The aim of this study was to describe the cellular and molecular alterations observed in murine airways after exposure to either 1 or 2 ppm O3. After exposing adult, female C57BL/6J mice to filtered air, 1 or 2 ppm O3 for 3 hours, we assessed hallmark responses including airway inflammatory cell counts, epithelial permeability, cytokine secretion, and morphological alterations of the large airways. Further, we performed RNA-seq to profile gene expression in two critical tissues involved in O3 responses: conducting airways (CA) and airway macrophages (AM). We observed a concentration-dependent increase in airway inflammation and injury, and a large number of genes were differentially expressed in both target tissues at both concentrations of O3. Genes that were differentially expressed in CA were generally associated with barrier function, detoxification processes, and cellular proliferation. The differentially expressed genes in AM were associated with innate immune signaling, cytokine production, and extracellular matrix remodeling. Overall, our study has described transcriptional responses to acute O3 exposure, revealing both shared and unique gene expression patterns across multiple concentrations of O3 and in two important O3-responsive tissues. These profiles provide broad mechanistic insight into pulmonary O3 toxicity, and reveal a variety of targets for refined follow-up studies.


2020 ◽  
Author(s):  
Alena Moudra ◽  
Veronika Niederlova ◽  
Jiri Novotny ◽  
Lucie Schmiedova ◽  
Jan Kubovciak ◽  
...  

AbstractAntigen-inexperienced memory-like T (AIMT) cells are functionally unique T cells representing one of the two largest subsets of murine CD8+ T cells. However, differences between laboratory inbred strains, insufficient data from germ-free mice, a complete lack of data from feral mice, and unclear relationship between AIMT cells formation during aging represent major barriers for better understanding of their biology. We performed a thorough characterization of AIMT cells from mice of different genetic background, age, and hygienic status by flow cytometry and multi-omics approaches including analyses of gene expression, TCR repertoire, and microbial colonization. Our data showed that AIMT cells are steadily present in mice independently of their genetic background and hygienic status. Despite differences in their gene expression profiles, young and aged AIMT cells originate from identical clones. We identified that CD122 discriminates two major subsets of AIMT cells in a strain-independent manner. Whereas thymic CD122LOW AIMT cells (innate memory) prevail only in young animals with high thymic IL-4 production, peripheral CD122HIGH AIMT cells (virtual memory) dominate in aged mice. Co-housing with feral mice changed the bacterial colonization of laboratory strains, but had only minimal effects on the CD8+ T-cell compartment including AIMT cells.


2021 ◽  
Author(s):  
Arnav Gupta ◽  
Sarah K. Sasse ◽  
Lynn Sanford ◽  
Margaret A. Gruca ◽  
Robin D. Dowell ◽  
...  

AbstractTranscriptional responses to wildfire smoke, an increasingly important cause of human morbidity, are poorly understood. Here, using a combination of precision nuclear run-on sequencing (PRO-seq) and the assay for transposase-accessible chromatin using sequencing (ATAC-seq), we identify rapid and dynamic changes in transcription and chromatin structure in Beas-2B airway epithelial cells after exposure to wood smoke particles (WSP). By comparing 30 and 120 minutes of WSP exposure, we defined three distinct temporal patterns of transcriptional induction and chromatin responses to WSP. Whereas transcription of canonical targets of the aryl hydrocarbon receptor (AHR), such as CYP1A1 and AHRR, was robustly increased after 30 minutes of WSP exposure, transcription of these genes and associated enhancers returned to near baseline at 120 minutes. ChIP-qPCR assays and AHR knockdown confirmed a role for AHR in regulating these transcriptional responses, and we applied bioinformatics approaches to identify novel AHR-regulated pathways and targets including the DNA methyltransferase, DNMT3L, and its interacting factor, SPOCD1. Our analysis also defined a role for NFkB as a primary transcriptional effector of WSP-induced changes in gene expression. The kinetics of AHR- and NFkB-regulated responses to WSP were distinguishable based on the timing of both transcriptional responses and chromatin remodeling, with induction of several cytokines implicated in maintaining the NFkB response. In aggregate, our data establish a direct and primary role for AHR in mediating airway epithelial responses to WSP and identify crosstalk between AHR and NFkB signaling in controlling pro-inflammatory gene expression.


2021 ◽  
Author(s):  
Dennis A Sun ◽  
Nipam H Patel

AbstractEmerging research organisms enable the study of biology that cannot be addressed using classical “model” organisms. The development of novel data resources can accelerate research in such animals. Here, we present new functional genomic resources for the amphipod crustacean Parhyale hawaiensis, facilitating the exploration of gene regulatory evolution using this emerging research organism. We use Omni-ATAC-Seq, an improved form of the Assay for Transposase-Accessible Chromatin coupled with next-generation sequencing (ATAC-Seq), to identify accessible chromatin genome-wide across a broad time course of Parhyale embryonic development. This time course encompasses many major morphological events, including segmentation, body regionalization, gut morphogenesis, and limb development. In addition, we use short- and long-read RNA-Seq to generate an improved Parhyale genome annotation, enabling deeper classification of identified regulatory elements. We leverage a variety of bioinformatic tools to discover differential accessibility, predict nucleosome positioning, infer transcription factor binding, cluster peaks based on accessibility dynamics, classify biological functions, and correlate gene expression with accessibility. Using a Minos transposase reporter system, we demonstrate the potential to identify novel regulatory elements using this approach, including distal regulatory elements. This work provides a platform for the identification of novel developmental regulatory elements in Parhyale, and offers a framework for performing such experiments in other emerging research organisms.Primary Findings-Omni-ATAC-Seq identifies cis-regulatory elements genome-wide during crustacean embryogenesis-Combined short- and long-read RNA-Seq improves the Parhyale genome annotation-ImpulseDE2 analysis identifies dynamically regulated candidate regulatory elements-NucleoATAC and HINT-ATAC enable inference of nucleosome occupancy and transcription factor binding-Fuzzy clustering reveals peaks with distinct accessibility and chromatin dynamics-Integration of accessibility and gene expression reveals possible enhancers and repressors-Omni-ATAC can identify known and novel regulatory elements


2017 ◽  
Author(s):  
Yang Zhang ◽  
Daniel W. Ngu ◽  
Daniel Carvalho ◽  
Zhikai Liang ◽  
Yumou Qiu ◽  
...  

AbstractCross-species comparisons of transcriptional regulation have the potential to identify functionally constrained transcriptional regulation and genes for which a change in transcriptional regulation correlates with a change in phenotype. Conventional differential gene expression analysis and a different approach based on identifying differentially regulated orthologs (DROs) are compared using paired time course gene expression data from two species which respond similarly to cold – maize (Zea mays) and sorghum (Sorghum bicolor). Both approaches suggest that, for genes conserved at syntenic positions for millions of years, the majority of cold responsive transcriptional regulation is species specific, although initial transcriptional responses to cold appear to be more conserved between the two species than later responses. In maize, the promoters of genes with both species specific and conserved transcriptional responses to cold tend to contain more micrococcal nuclease hypersensitive sites in their promoters, a proxy for open chromatin. However, genes with conserved patterns of transcriptional regulation between the two species show lower ratios of nonsynonymous to synonymous substitutions consistent with this population of genes experiencing stronger purifying selection. We hypothesize that cold responsive transcriptional regulation is a fast evolving and largely neutral molecular phenotype for the majority of genes in Andropogoneae, while a smaller core set of genes involved in perceiving and responding to cold stress are subject to functionally constrained cold responsive regulation.


Sign in / Sign up

Export Citation Format

Share Document