scholarly journals An effective drug-disease associations prediction model based on graphic representation learning over multi-biomolecular network

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Hanjing Jiang ◽  
Yabing Huang

Abstract Background Drug-disease associations (DDAs) can provide important information for exploring the potential efficacy of drugs. However, up to now, there are still few DDAs verified by experiments. Previous evidence indicates that the combination of information would be conducive to the discovery of new DDAs. How to integrate different biological data sources and identify the most effective drugs for a certain disease based on drug-disease coupled mechanisms is still a challenging problem. Results In this paper, we proposed a novel computation model for DDA predictions based on graph representation learning over multi-biomolecular network (GRLMN). More specifically, we firstly constructed a large-scale molecular association network (MAN) by integrating the associations among drugs, diseases, proteins, miRNAs, and lncRNAs. Then, a graph embedding model was used to learn vector representations for all drugs and diseases in MAN. Finally, the combined features were fed to a random forest (RF) model to predict new DDAs. The proposed model was evaluated on the SCMFDD-S data set using five-fold cross-validation. Experiment results showed that GRLMN model was very accurate with the area under the ROC curve (AUC) of 87.9%, which outperformed all previous works in terms of both accuracy and AUC in benchmark dataset. To further verify the high performance of GRLMN, we carried out two case studies for two common diseases. As a result, in the ranking of drugs that were predicted to be related to certain diseases (such as kidney disease and fever), 15 of the top 20 drugs have been experimentally confirmed. Conclusions The experimental results show that our model has good performance in the prediction of DDA. GRLMN is an effective prioritization tool for screening the reliable DDAs for follow-up studies concerning their participation in drug reposition.

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2111
Author(s):  
Bo-Wei Zhao ◽  
Zhu-Hong You ◽  
Lun Hu ◽  
Zhen-Hao Guo ◽  
Lei Wang ◽  
...  

Identification of drug-target interactions (DTIs) is a significant step in the drug discovery or repositioning process. Compared with the time-consuming and labor-intensive in vivo experimental methods, the computational models can provide high-quality DTI candidates in an instant. In this study, we propose a novel method called LGDTI to predict DTIs based on large-scale graph representation learning. LGDTI can capture the local and global structural information of the graph. Specifically, the first-order neighbor information of nodes can be aggregated by the graph convolutional network (GCN); on the other hand, the high-order neighbor information of nodes can be learned by the graph embedding method called DeepWalk. Finally, the two kinds of feature are fed into the random forest classifier to train and predict potential DTIs. The results show that our method obtained area under the receiver operating characteristic curve (AUROC) of 0.9455 and area under the precision-recall curve (AUPR) of 0.9491 under 5-fold cross-validation. Moreover, we compare the presented method with some existing state-of-the-art methods. These results imply that LGDTI can efficiently and robustly capture undiscovered DTIs. Moreover, the proposed model is expected to bring new inspiration and provide novel perspectives to relevant researchers.


2020 ◽  
Vol 14 (3) ◽  
pp. 342-350
Author(s):  
Hao Liu ◽  
Jindong Han ◽  
Yanjie Fu ◽  
Jingbo Zhou ◽  
Xinjiang Lu ◽  
...  

Multi-modal transportation recommendation aims to provide the most appropriate travel route with various transportation modes according to certain criteria. After analyzing large-scale navigation data, we find that route representations exhibit two patterns: spatio-temporal autocorrelations within transportation networks and the semantic coherence of route sequences. However, there are few studies that consider both patterns when developing multi-modal transportation systems. To this end, in this paper, we study multi-modal transportation recommendation with unified route representation learning by exploiting both spatio-temporal dependencies in transportation networks and the semantic coherence of historical routes. Specifically, we propose to unify both dynamic graph representation learning and hierarchical multi-task learning for multi-modal transportation recommendations. Along this line, we first transform the multi-modal transportation network into time-dependent multi-view transportation graphs and propose a spatiotemporal graph neural network module to capture the spatial and temporal autocorrelation. Then, we introduce a coherent-aware attentive route representation learning module to project arbitrary-length routes into fixed-length representation vectors, with explicit modeling of route coherence from historical routes. Moreover, we develop a hierarchical multi-task learning module to differentiate route representations for different transport modes, and this is guided by the final recommendation feedback as well as multiple auxiliary tasks equipped in different network layers. Extensive experimental results on two large-scale real-world datasets demonstrate the performance of the proposed system outperforms eight baselines.


Author(s):  
Ronghui You ◽  
Yuxuan Liu ◽  
Hiroshi Mamitsuka ◽  
Shanfeng Zhu

Abstract Motivation With the rapid increase of biomedical articles, large-scale automatic Medical Subject Headings (MeSH) indexing has become increasingly important. FullMeSH, the only method for large-scale MeSH indexing with full text, suffers from three major drawbacks: FullMeSH (i) uses Learning To Rank, which is time-consuming, (ii) can capture some pre-defined sections only in full text and (iii) ignores the whole MEDLINE database. Results We propose a computationally lighter, full text and deep-learning-based MeSH indexing method, BERTMeSH, which is flexible for section organization in full text. BERTMeSH has two technologies: (i) the state-of-the-art pre-trained deep contextual representation, Bidirectional Encoder Representations from Transformers (BERT), which makes BERTMeSH capture deep semantics of full text. (ii) A transfer learning strategy for using both full text in PubMed Central (PMC) and title and abstract (only and no full text) in MEDLINE, to take advantages of both. In our experiments, BERTMeSH was pre-trained with 3 million MEDLINE citations and trained on ∼1.5 million full texts in PMC. BERTMeSH outperformed various cutting-edge baselines. For example, for 20 K test articles of PMC, BERTMeSH achieved a Micro F-measure of 69.2%, which was 6.3% higher than FullMeSH with the difference being statistically significant. Also prediction of 20 K test articles needed 5 min by BERTMeSH, while it took more than 10 h by FullMeSH, proving the computational efficiency of BERTMeSH. Supplementary information Supplementary data are available at Bioinformatics online


2020 ◽  
pp. 1-51
Author(s):  
Ivan Vulić ◽  
Simon Baker ◽  
Edoardo Maria Ponti ◽  
Ulla Petti ◽  
Ira Leviant ◽  
...  

We introduce Multi-SimLex, a large-scale lexical resource and evaluation benchmark covering data sets for 12 typologically diverse languages, including major languages (e.g., Mandarin Chinese, Spanish, Russian) as well as less-resourced ones (e.g., Welsh, Kiswahili). Each language data set is annotated for the lexical relation of semantic similarity and contains 1,888 semantically aligned concept pairs, providing a representative coverage of word classes (nouns, verbs, adjectives, adverbs), frequency ranks, similarity intervals, lexical fields, and concreteness levels. Additionally, owing to the alignment of concepts across languages, we provide a suite of 66 crosslingual semantic similarity data sets. Because of its extensive size and language coverage, Multi-SimLex provides entirely novel opportunities for experimental evaluation and analysis. On its monolingual and crosslingual benchmarks, we evaluate and analyze a wide array of recent state-of-the-art monolingual and crosslingual representation models, including static and contextualized word embeddings (such as fastText, monolingual and multilingual BERT, XLM), externally informed lexical representations, as well as fully unsupervised and (weakly) supervised crosslingual word embeddings. We also present a step-by-step data set creation protocol for creating consistent, Multi-Simlex -style resources for additional languages.We make these contributions—the public release of Multi-SimLex data sets, their creation protocol, strong baseline results, and in-depth analyses which can be be helpful in guiding future developments in multilingual lexical semantics and representation learning—available via aWeb site that will encourage community effort in further expansion of Multi-Simlex to many more languages. Such a large-scale semantic resource could inspire significant further advances in NLP across languages.


2020 ◽  
Author(s):  
Markus Wiedemann ◽  
Bernhard S.A. Schuberth ◽  
Lorenzo Colli ◽  
Hans-Peter Bunge ◽  
Dieter Kranzlmüller

<p>Precise knowledge of the forces acting at the base of tectonic plates is of fundamental importance, but models of mantle dynamics are still often qualitative in nature to date. One particular problem is that we cannot access the deep interior of our planet and can therefore not make direct in situ measurements of the relevant physical parameters. Fortunately, modern software and powerful high-performance computing infrastructures allow us to generate complex three-dimensional models of the time evolution of mantle flow through large-scale numerical simulations.</p><p>In this project, we aim at visualizing the resulting convective patterns that occur thousands of kilometres below our feet and to make them "accessible" using high-end virtual reality techniques.</p><p>Models with several hundred million grid cells are nowadays possible using the modern supercomputing facilities, such as those available at the Leibniz Supercomputing Centre. These models provide quantitative estimates on the inaccessible parameters, such as buoyancy and temperature, as well as predictions of the associated gravity field and seismic wavefield that can be tested against Earth observations.</p><p>3-D visualizations of the computed physical parameters allow us to inspect the models such as if one were actually travelling down into the Earth. This way, convective processes that occur thousands of kilometres below our feet are virtually accessible by combining the simulations with high-end VR techniques.</p><p>The large data set used here poses severe challenges for real time visualization, because it cannot fit into graphics memory, while requiring rendering with strict deadlines. This raises the necessity to balance the amount of displayed data versus the time needed for rendering it.</p><p>As a solution, we introduce a rendering framework and describe our workflow that allows us to visualize this geoscientific dataset. Our example exceeds 16 TByte in size, which is beyond the capabilities of most visualization tools. To display this dataset in real-time, we reduce and declutter the dataset through isosurfacing and mesh optimization techniques.</p><p>Our rendering framework relies on multithreading and data decoupling mechanisms that allow to upload data to graphics memory while maintaining high frame rates. The final visualization application can be executed in a CAVE installation as well as on head mounted displays such as the HTC Vive or Oculus Rift. The latter devices will allow for viewing our example on-site at the EGU conference.</p>


2016 ◽  
Vol 68 (3) ◽  
pp. 509-513 ◽  
Author(s):  
Chunhe Yang ◽  
Hongwu Du

The hierarchical clustering method has been used for exploration of gene expression and proteomic profiles; however, little research into its application in the examination of expression of multiplecytokine/chemokine responses to stimuli has been reported. Thus, little progress has been made on how phytohemagglutinin(PHA) affects cytokine expression profiling on a large scale in the human hematological system. To investigate the characteristic expression pattern under PHA stimulation, Luminex, a multiplex bead-based suspension array, was performed. The data set collected from human peripheral blood mononuclear cells (PBMC) was analyzed using the hierarchical clustering method. It was revealed that two specific chemokines (CCL3 andCCL4) underwent significantly greater quantitative changes during induction of expression than other tested cytokines/chemokines after PHA stimulation. This result indicates that hierarchical clustering is a useful tool for detecting fine patterns during exploration of biological data, and that it can play an important role in comparative studies.


Author(s):  
Shimei Pan ◽  
Tao Ding

Automated representation learning is behind many recent success stories in machine learning. It is often used to transfer knowledge learned from a large dataset (e.g., raw text) to tasks for which only a small number of training examples are available. In this paper, we review recent advance in learning to represent social media users in low-dimensional embeddings. The technology is critical for creating high performance social media-based human traits and behavior models since the ground truth for assessing latent human traits and behavior is often expensive to acquire at a large scale. In this survey, we review typical methods for learning a unified user embeddings from heterogeneous user data (e.g., combines social media texts with images to learn a unified user representation). Finally we point out some current issues and future directions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bo-Wei Zhao ◽  
Zhu-Hong You ◽  
Leon Wong ◽  
Ping Zhang ◽  
Hao-Yuan Li ◽  
...  

Drug repositioning is an application-based solution based on mining existing drugs to find new targets, quickly discovering new drug-disease associations, and reducing the risk of drug discovery in traditional medicine and biology. Therefore, it is of great significance to design a computational model with high efficiency and accuracy. In this paper, we propose a novel computational method MGRL to predict drug-disease associations based on multi-graph representation learning. More specifically, MGRL first uses the graph convolution network to learn the graph representation of drugs and diseases from their self-attributes. Then, the graph embedding algorithm is used to represent the relationships between drugs and diseases. Finally, the two kinds of graph representation learning features were put into the random forest classifier for training. To the best of our knowledge, this is the first work to construct a multi-graph to extract the characteristics of drugs and diseases to predict drug-disease associations. The experiments show that the MGRL can achieve a higher AUC of 0.8506 based on five-fold cross-validation, which is significantly better than other existing methods. Case study results show the reliability of the proposed method, which is of great significance for practical applications.


2020 ◽  
Vol 32 (1) ◽  
pp. 182-204 ◽  
Author(s):  
Xiping Ju ◽  
Biao Fang ◽  
Rui Yan ◽  
Xiaoliang Xu ◽  
Huajin Tang

A spiking neural network (SNN) is a type of biological plausibility model that performs information processing based on spikes. Training a deep SNN effectively is challenging due to the nondifferention of spike signals. Recent advances have shown that high-performance SNNs can be obtained by converting convolutional neural networks (CNNs). However, the large-scale SNNs are poorly served by conventional architectures due to the dynamic nature of spiking neurons. In this letter, we propose a hardware architecture to enable efficient implementation of SNNs. All layers in the network are mapped on one chip so that the computation of different time steps can be done in parallel to reduce latency. We propose new spiking max-pooling method to reduce computation complexity. In addition, we apply approaches based on shift register and coarsely grained parallels to accelerate convolution operation. We also investigate the effect of different encoding methods on SNN accuracy. Finally, we validate the hardware architecture on the Xilinx Zynq ZCU102. The experimental results on the MNIST data set show that it can achieve an accuracy of 98.94% with eight-bit quantized weights. Furthermore, it achieves 164 frames per second (FPS) under 150 MHz clock frequency and obtains 41[Formula: see text] speed-up compared to CPU implementation and 22 times lower power than GPU implementation.


2002 ◽  
Vol 1 (4) ◽  
pp. 403-420 ◽  
Author(s):  
D. Stanescu ◽  
J. Xu ◽  
M.Y. Hussaini ◽  
F. Farassat

The purpose of this paper is to demonstrate the feasibility of computing the fan inlet noise field around a real twin-engine aircraft, which includes the radiation of the main spinning modes from the engine as well as the reflection and scattering by the fuselage and the wing. This first-cut large-scale computation is based on time domain and frequency domain approaches that employ spectral element methods for spatial discretization. The numerical algorithms are designed to exploit high-performance computers such as the IBM SP4. Although the simulations could not match the exact conditions of the only available experimental data set, they are able to predict the trends of the measured noise field fairly well.


Sign in / Sign up

Export Citation Format

Share Document