scholarly journals Putative biomarkers for predicting tumor sample purity based on gene expression data

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yuanyuan Li ◽  
David M. Umbach ◽  
Adrienna Bingham ◽  
Qi-Jing Li ◽  
Yuan Zhuang ◽  
...  

Abstract Background Tumor purity is the percent of cancer cells present in a sample of tumor tissue. The non-cancerous cells (immune cells, fibroblasts, etc.) have an important role in tumor biology. The ability to determine tumor purity is important to understand the roles of cancerous and non-cancerous cells in a tumor. Methods We applied a supervised machine learning method, XGBoost, to data from 33 TCGA tumor types to predict tumor purity using RNA-seq gene expression data. Results Across the 33 tumor types, the median correlation between observed and predicted tumor-purity ranged from 0.75 to 0.87 with small root mean square errors, suggesting that tumor purity can be accurately predicted υσινγ expression data. We further confirmed that expression levels of a ten-gene set (CSF2RB, RHOH, C1S, CCDC69, CCL22, CYTIP, POU2AF1, FGR, CCL21, and IL7R) were predictive of tumor purity regardless of tumor type. We tested whether our set of ten genes could accurately predict tumor purity of a TCGA-independent data set. We showed that expression levels from our set of ten genes were highly correlated (ρ = 0.88) with the actual observed tumor purity. Conclusions Our analyses suggested that the ten-gene set may serve as a biomarker for tumor purity prediction using gene expression data.

2020 ◽  
Vol 6 (6) ◽  
Author(s):  
Ali Farzane ◽  
Maryam Akbarzadeh ◽  
Reza Ferdousi ◽  
Mohammadreza Rashidi ◽  
Reza Safdari

Objectives: In this study, we aimed to identify putative biomarkers for identification and characterization of these cells in liver cancer. Methods: We employed a supervised machine learning method, XGBoost, to data from 13 GEO data series to classify samples using gene expression data. Results.  Across the 376 samples (129 CSCs and 247 non-CSCs cases), XGBoost displayed high performance in the classification of data. XGBoost feature importance scores and SHAP (Shapley Additive explanation) values were used for the interpretation of results and analysis of individual gene importance. We confirmed that expression levels of a 10-gene set (PTGER3, AURKB, C15orf40, IDI2, OR8D1, NACA2, SERPINB6, L1CAM, SMC1A, and RASGRF1) were predictive. The results showed that these 10 genes can detect CSCs robustly with accuracy, sensitivity, and specificity of 97 %, 100 %, and 95 %, respectively. Conclusions. We suggest that the ten-gene set may be used as a biomarker set for detecting and characterizing CSCs using gene expression data.


Author(s):  
Chia Huey Ooi

Molecular classification involves the classification of samples into groups of biological phenotypes. Studies on molecular classification generally focus on cancer for the following reason: Molecular classification of tumor samples from patients into different molecular types or subtypes is vital for diagnosis, prognosis, and effective treatment of cancer (Slonim, Tamayo, Mesirov, Golub, and Lander, 2000). Traditionally, such classification relies on observations regarding the location (Slonim et al., 2000) and microscopic appearance of the cancerous cells (Garber et al., 2001). These methods have proven to be slow and ineffective; there is no way of predicting with reliable accuracy the progress of the disease, since tumors of similar appearance have been known to take different paths in the course of time. With the advent of the microarray technology, data regarding the gene expression levels in each tumor sample may now prove to be a useful tool in molecular classification. This is because gene expression data provide snapshots of the activities within the cells and thus, the profile of the state of the cells in the tissue. The use of microarrays for gene expression profiling was first published in 1995 (Schena, Shalon, Davis, and Brown, 1995). In a typical microarray experiment, the expression levels of up to 10,000 or more genes are measured in each sample. The high-dimensionality of the data means that feature selection (FS) plays a crucial role in aiding the classification process by reducing the dimensionality of the input to the classification process. In the context of FS, the terms gene and feature will be used interchangeably in the context of gene expression data.


2020 ◽  
Vol 18 (01) ◽  
pp. 2050002
Author(s):  
Mingyu Oh ◽  
Kipoong Kim ◽  
Hokeun Sun

Gene set analysis aims to identify differentially expressed or co-expressed genes within a biological pathway between two experimental conditions, so that it can eventually reveal biological processes and pathways involved in disease development. In the last few decades, various statistical and computational methods have been proposed to improve statistical power of gene set analysis. In recent years, much attention has been paid to differentially co-expressed genes since they can be potentially disease-related genes without significant difference in average expression levels between two conditions. In this paper, we propose a new statistical method to identify differentially co-expressed genes from microarray gene expression data. The proposed method first estimates co-expression levels of paired genes using covariance regularization by thresholding, and then significance of difference in covariance estimation between two conditions is evaluated. We demonstrated that the proposed method is more powerful than the existing main-stream methods to detect co-expressed genes through extensive simulation studies. Also, we applied it to various microarray gene expression datasets related with mutant p53 transcriptional activity, and epithelium and stroma breast cancer.


2020 ◽  
Vol 15 ◽  
Author(s):  
Chen-An Tsai ◽  
James J. Chen

Background: Gene set enrichment analyses (GSEA) provide a useful and powerful approach to identify differentially expressed gene sets with prior biological knowledge. Several GSEA algorithms have been proposed to perform enrichment analyses on groups of genes. However, many of these algorithms have focused on identification of differentially expressed gene sets in a given phenotype. Objective: In this paper, we propose a gene set analytic framework, Gene Set Correlation Analysis (GSCoA), that simultaneously measures within and between gene sets variation to identify sets of genes enriched for differential expression and highly co-related pathways. Methods: We apply co-inertia analysis to the comparisons of cross-gene sets in gene expression data to measure the costructure of expression profiles in pairs of gene sets. Co-inertia analysis (CIA) is one multivariate method to identify trends or co-relationships in multiple datasets, which contain the same samples. The objective of CIA is to seek ordinations (dimension reduction diagrams) of two gene sets such that the square covariance between the projections of the gene sets on successive axes is maximized. Simulation studies illustrate that CIA offers superior performance in identifying corelationships between gene sets in all simulation settings when compared to correlation-based gene set methods. Result and Conclusion: We also combine between-gene set CIA and GSEA to discover the relationships between gene sets significantly associated with phenotypes. In addition, we provide a graphical technique for visualizing and simultaneously exploring the associations of between and within gene sets and their interaction and network. We then demonstrate integration of within and between gene sets variation using CIA and GSEA, applied to the p53 gene expression data using the c2 curated gene sets. Ultimately, the GSCoA approach provides an attractive tool for identification and visualization of novel associations between pairs of gene sets by integrating co-relationships between gene sets into gene set analysis.


Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 983 ◽  
Author(s):  
Otília Menyhart ◽  
Tatsuhiko Kakisaka ◽  
Lőrinc Sándor Pongor ◽  
Hiroyuki Uetake ◽  
Ajay Goel ◽  
...  

Background: Numerous driver mutations have been identified in colorectal cancer (CRC), but their relevance to the development of targeted therapies remains elusive. The secondary effects of pathogenic driver mutations on downstream signaling pathways offer a potential approach for the identification of therapeutic targets. We aimed to identify differentially expressed genes as potential drug targets linked to driver mutations. Methods: Somatic mutations and the gene expression data of 582 CRC patients were utilized, incorporating the mutational status of 39,916 and the expression levels of 20,500 genes. To uncover candidate targets, the expression levels of various genes in wild-type and mutant cases for the most frequent disruptive mutations were compared with a Mann–Whitney test. A survival analysis was performed in 2100 patients with transcriptomic gene expression data. Up-regulated genes associated with worse survival were filtered for potentially actionable targets. The most significant hits were validated in an independent set of 171 CRC patients. Results: Altogether, 426 disruptive mutation-associated upregulated genes were identified. Among these, 95 were linked to worse recurrence-free survival (RFS). Based on the druggability filter, 37 potentially actionable targets were revealed. We selected seven genes and validated their expression in 171 patient specimens. The best independently validated combinations were DUSP4 (p = 2.6 × 10−12) in ACVR2A mutated (7.7%) patients; BMP4 (p = 1.6 × 10−04) in SOX9 mutated (8.1%) patients; TRIB2 (p = 1.35 × 10−14) in ACVR2A mutated patients; VSIG4 (p = 2.6 × 10−05) in ANK3 mutated (7.6%) patients, and DUSP4 (p = 7.1 × 10−04) in AMER1 mutated (8.2%) patients. Conclusions: The results uncovered potentially druggable genes in colorectal cancer. The identified mutations could enable future patient stratification for targeted therapy.


2021 ◽  
Author(s):  
Huan-Huan Wei ◽  
Hui Lu ◽  
Hongyu Zhao

AbstractMany computational methods have been developed for inferring causality among genes using cross-sectional gene expression data, such as single-cell RNA sequencing (scRNA-seq) data. However, due to the limitations of scRNA-seq technologies, time-lagged causal relationships may be missed by existing methods. In this work, we propose a method, called causal inference with time-lagged information (CITL), to infer time-lagged causal relationships from scRNA-seq data by assessing conditional independence between the changing and current expression levels of genes. CITL estimates the changing expression levels of genes by “RNA velocity”. We demonstrate the accuracy and stability of CITL for inferring time-lagged causality on simulation data against other leading approaches. We have applied CITL to real scRNA data and inferred 878 pairs of time-lagged causal relationships, with many of these inferred results supported by the literature.Author summaryComputational causal inference is a promising way to survey causal relationships between genes efficiently. Though many causal inference methods have been applied to gene expression data, none considers the time-lagged causal relationship, which means that some genes may take some time to affect their target genes with several reactions. If relationships between genes are time-lagged, the existing methods’ assumptions will be violated. The relationships will be challenging to recognize. We demonstrate that this is indeed the case through simulation. Therefore, we develop a method for inferring time-lagged causal relationships of single-cell gene expression data. We assume that a time-lagged causal relationship should present a strong association between the cause and the effect’s changing. To calculate such correlation, we first estimate the derivative of gene expression using the information from unspliced transcripts. Then, we use conditional independent tests to search gene pairs satisfying our assumption. Our results suggest that we could accurately infer time-lagged causal gene pairs validated by published literature. This method may complement gene regulatory analysis and provide candidate gene pairs for further controlled experiments.


2015 ◽  
Vol 13 (06) ◽  
pp. 1550019 ◽  
Author(s):  
Alexei A. Sharov ◽  
David Schlessinger ◽  
Minoru S. H. Ko

We have developed ExAtlas, an on-line software tool for meta-analysis and visualization of gene expression data. In contrast to existing software tools, ExAtlas compares multi-component data sets and generates results for all combinations (e.g. all gene expression profiles versus all Gene Ontology annotations). ExAtlas handles both users’ own data and data extracted semi-automatically from the public repository (GEO/NCBI database). ExAtlas provides a variety of tools for meta-analyses: (1) standard meta-analysis (fixed effects, random effects, z-score, and Fisher’s methods); (2) analyses of global correlations between gene expression data sets; (3) gene set enrichment; (4) gene set overlap; (5) gene association by expression profile; (6) gene specificity; and (7) statistical analysis (ANOVA, pairwise comparison, and PCA). ExAtlas produces graphical outputs, including heatmaps, scatter-plots, bar-charts, and three-dimensional images. Some of the most widely used public data sets (e.g. GNF/BioGPS, Gene Ontology, KEGG, GAD phenotypes, BrainScan, ENCODE ChIP-seq, and protein–protein interaction) are pre-loaded and can be used for functional annotations.


2018 ◽  
Vol 12 (S9) ◽  
Author(s):  
Dong Wang ◽  
Jie Li ◽  
Rui Liu ◽  
Yadong Wang

2014 ◽  
Vol 13s1 ◽  
pp. CIN.S13882 ◽  
Author(s):  
Binghuang Cai ◽  
Xia Jiang

Analyzing biological system abnormalities in cancer patients based on measures of biological entities, such as gene expression levels, is an important and challenging problem. This paper applies existing methods, Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis, to pathway abnormality analysis in lung cancer using microarray gene expression data. Gene expression data from studies of Lung Squamous Cell Carcinoma (LUSC) in The Cancer Genome Atlas project, and pathway gene set data from the Kyoto Encyclopedia of Genes and Genomes were used to analyze the relationship between pathways and phenotypes. Results, in the form of pathway rankings, indicate that some pathways may behave abnormally in LUSC. For example, both the cell cycle and viral carcinogenesis pathways ranked very high in LUSC. Furthermore, some pathways that are known to be associated with cancer, such as the p53 and the PI3K-Akt signal transduction pathways, were found to rank high in LUSC. Other pathways, such as bladder cancer and thyroid cancer pathways, were also ranked high in LUSC.


Sign in / Sign up

Export Citation Format

Share Document