scholarly journals Analysis of heterogeneous genomic samples using image normalization and machine learning

BMC Genomics ◽  
2020 ◽  
Vol 21 (S6) ◽  
Author(s):  
Sunitha Basodi ◽  
Pelin Icer Baykal ◽  
Alex Zelikovsky ◽  
Pavel Skums ◽  
Yi Pan

Abstract Background Analysis of heterogeneous populations such as viral quasispecies is one of the most challenging bioinformatics problems. Although machine learning models are becoming to be widely employed for analysis of sequence data from such populations, their straightforward application is impeded by multiple challenges associated with technological limitations and biases, difficulty of selection of relevant features and need to compare genomic datasets of different sizes and structures. Results We propose a novel preprocessing approach to transform irregular genomic data into normalized image data. Such representation allows to restate the problems of classification and comparison of heterogeneous populations as image classification problems which can be solved using variety of available machine learning tools. We then apply the proposed approach to two important problems in molecular epidemiology: inference of viral infection stage and detection of viral transmission clusters using next-generation sequencing data. The infection staging method has been applied to HCV HVR1 samples collected from 108 recently and 257 chronically infected individuals. The SVM-based image classification approach achieved more than 95% accuracy for both recently and chronically HCV-infected individuals. Clustering has been performed on the data collected from 33 epidemiologically curated outbreaks, yielding more than 97% accuracy. Conclusions Sequence image normalization method allows for a robust conversion of genomic data into numerical data and overcomes several issues associated with employing machine learning methods to viral populations. Image data also help in the visualization of genomic data. Experimental results demonstrate that the proposed method can be successfully applied to different problems in molecular epidemiology and surveillance of viral diseases. Simple binary classifiers and clustering techniques applied to the image data are equally or more accurate than other models.

2019 ◽  
Author(s):  
Sunitha Basodi ◽  
Pelin Icer Baykal ◽  
Alex Zelikovsky ◽  
Pavel Skums ◽  
Yi Pan

AbstractBackgroundAnalysis of heterogeneous populations such as viral quasispecies is one of the most challenging bioinformatics problems. Although machine learning models are becoming to be widely employed for the analysis of sequencing data associated with such populations, their straightforward application is impeded by multiple challenges associated with technological limitations and biases, difficulty of selection of relevant features and need to compare genomic datastes of different sizes and structures.MethodsWe propose a novel preprocessing approach to transform irregular genomic data into normalized image data. Such representation allows to restate the problems of classification and comparison of heterogeneous populations as image classification problems which can be solved using variety of available machine learning tools. We then apply the proposed approach to two important molecular epidemiology problems: inference of viral infection stage and detection of viral transmission clusters and outbreaks using next-generation sequencing data.ResultsThe infection staging method has been applied to HCV HVR1 samples collected from 108 recently and 257 chronically infected individuals. The SVM-based image classification approach achieved more than 95% accuracy for both recently and chronically HCV-infected individuals. Clustering has been performed on the data collected from 33 epidemiologically curated outbreaks, yielding more than 97% accuracy.AvailabilityThe developed software is freely available at https://bitbucket.org/adv_bio_coll/chronic_vs_clinic


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Begüm D. Topçuoğlu ◽  
Nicholas A. Lesniak ◽  
Mack T. Ruffin ◽  
Jenna Wiens ◽  
Patrick D. Schloss

ABSTRACT Machine learning (ML) modeling of the human microbiome has the potential to identify microbial biomarkers and aid in the diagnosis of many diseases such as inflammatory bowel disease, diabetes, and colorectal cancer. Progress has been made toward developing ML models that predict health outcomes using bacterial abundances, but inconsistent adoption of training and evaluation methods call the validity of these models into question. Furthermore, there appears to be a preference by many researchers to favor increased model complexity over interpretability. To overcome these challenges, we trained seven models that used fecal 16S rRNA sequence data to predict the presence of colonic screen relevant neoplasias (SRNs) (n = 490 patients, 261 controls and 229 cases). We developed a reusable open-source pipeline to train, validate, and interpret ML models. To show the effect of model selection, we assessed the predictive performance, interpretability, and training time of L2-regularized logistic regression, L1- and L2-regularized support vector machines (SVM) with linear and radial basis function kernels, a decision tree, random forest, and gradient boosted trees (XGBoost). The random forest model performed best at detecting SRNs with an area under the receiver operating characteristic curve (AUROC) of 0.695 (interquartile range [IQR], 0.651 to 0.739) but was slow to train (83.2 h) and not inherently interpretable. Despite its simplicity, L2-regularized logistic regression followed random forest in predictive performance with an AUROC of 0.680 (IQR, 0.625 to 0.735), trained faster (12 min), and was inherently interpretable. Our analysis highlights the importance of choosing an ML approach based on the goal of the study, as the choice will inform expectations of performance and interpretability. IMPORTANCE Diagnosing diseases using machine learning (ML) is rapidly being adopted in microbiome studies. However, the estimated performance associated with these models is likely overoptimistic. Moreover, there is a trend toward using black box models without a discussion of the difficulty of interpreting such models when trying to identify microbial biomarkers of disease. This work represents a step toward developing more-reproducible ML practices in applying ML to microbiome research. We implement a rigorous pipeline and emphasize the importance of selecting ML models that reflect the goal of the study. These concepts are not particular to the study of human health but can also be applied to environmental microbiology studies.


2018 ◽  
Author(s):  
Jingwen Pei ◽  
Chong Chu ◽  
Xin Li ◽  
Bin Lu ◽  
Yufeng Wu

AbstractSpecies are considered to be the basic unit of ecological and evolutionary studies. Since multi-locus genomic data are becoming increasingly available, there has been considerable interests in the use of DNA sequence data to delimit species. In this paper, we show that machine learning can be used for species delimitation. There exists no species delimitation methods that are based on machine learning. Our method treats the species delimitation problem as a classification problem. It is a problem of identifying the category of a new observation on the basis of training data. Extensive simulation is first conducted over a broad range of evolutionary parameters for training purpose. Each pair of known populations are combined to form training samples with a label of “same species” or “different species”. We use Support Vector Machine (SVM) to train a classifier using a set of summary statistics computed from training samples as features. The trained classifier can classify a test sample to two outcomes: “same species” or “different species”. Given multi-locus genomic data of multiple related organisms or populations, our method (called CLADES) performs species delimitation by first classifying pairs of populations. CLADES then delimits species by maximizing the likelihood of species assignment for multiple populations. CLADES is evaluated through extensive simulation and also tested on real genetic data. We show that CLADES is both accurate and efficient for species delimitation when compared with existing methods. CLADES can be useful especially when existing methods have difficulty in delimitation, e.g. with short species divergence time and gene flow.


2019 ◽  
Author(s):  
Begüm D. Topçuoğlu ◽  
Nicholas A. Lesniak ◽  
Mack Ruffin ◽  
Jenna Wiens ◽  
Patrick D. Schloss

AbstractMachine learning (ML) modeling of the human microbiome has the potential to identify microbial biomarkers and aid in the diagnosis of many diseases such as inflammatory bowel disease, diabetes, and colorectal cancer. Progress has been made towards developing ML models that predict health outcomes using bacterial abundances, but inconsistent adoption of training and evaluation methods call the validity of these models into question. Furthermore, there appears to be a preference by many researchers to favor increased model complexity over interpretability. To overcome these challenges, we trained seven models that used fecal 16S rRNA sequence data to predict the presence of colonic screen relevant neoplasias (SRNs; n=490 patients, 261 controls and 229 cases). We developed a reusable open-source pipeline to train, validate, and interpret ML models. To show the effect of model selection, we assessed the predictive performance, interpretability, and training time of L2-regularized logistic regression, L1 and L2-regularized support vector machines (SVM) with linear and radial basis function kernels, decision trees, random forest, and gradient boosted trees (XGBoost). The random forest model performed best at detecting SRNs with an AUROC of 0.695 [IQR 0.651-0.739] but was slow to train (83.2 h) and not inherently interpretable. Despite its simplicity, L2-regularized logistic regression followed random forest in predictive performance with an AUROC of 0.680 [IQR 0.625-0.735], trained faster (12 min), and was inherently interpretable. Our analysis highlights the importance of choosing an ML approach based on the goal of the study, as the choice will inform expectations of performance and interpretability.ImportanceDiagnosing diseases using machine learning (ML) is rapidly being adopted in microbiome studies. However, the estimated performance associated with these models is likely over-optimistic. Moreover, there is a trend towards using black box models without a discussion of the difficulty of interpreting such models when trying to identify microbial biomarkers of disease. This work represents a step towards developing more reproducible ML practices in applying ML to microbiome research. We implement a rigorous pipeline and emphasize the importance of selecting ML models that reflect the goal of the study. These concepts are not particular to the study of human health but can also be applied to environmental microbiology studies.


2022 ◽  
Vol 13 (1) ◽  
pp. 1-14
Author(s):  
Shuteng Niu ◽  
Yushan Jiang ◽  
Bowen Chen ◽  
Jian Wang ◽  
Yongxin Liu ◽  
...  

In the past decades, information from all kinds of data has been on a rapid increase. With state-of-the-art performance, machine learning algorithms have been beneficial for information management. However, insufficient supervised training data is still an adversity in many real-world applications. Therefore, transfer learning (TF) was proposed to address this issue. This article studies a not well investigated but important TL problem termed cross-modality transfer learning (CMTL). This topic is closely related to distant domain transfer learning (DDTL) and negative transfer. In general, conventional TL disciplines assume that the source domain and the target domain are in the same modality. DDTL aims to make efficient transfers even when the domains or the tasks are entirely different. As an extension of DDTL, CMTL aims to make efficient transfers between two different data modalities, such as from image to text. As the main focus of this study, we aim to improve the performance of image classification by transferring knowledge from text data. Previously, a few CMTL algorithms were proposed to deal with image classification problems. However, most existing algorithms are very task specific, and they are unstable on convergence. There are four main contributions in this study. First, we propose a novel heterogeneous CMTL algorithm, which requires only a tiny set of unlabeled target data and labeled source data with associate text tags. Second, we introduce a latent semantic information extraction method to connect the information learned from the image data and the text data. Third, the proposed method can effectively handle the information transfer across different modalities (text-image). Fourth, we examined our algorithm on a public dataset, Office-31. It has achieved up to 5% higher classification accuracy than “non-transfer” algorithms and up to 9% higher than existing CMTL algorithms.


Author(s):  
Francesca Odone ◽  
Alessandro Verri

In this chapter we review some kernel methods useful for image classification and retrieval applications. Starting from the problem of constructing appropriate image representations, we describe in depth and comment on the main properties of various kernel engineering approaches that have been recently proposed in the computer vision and machine learning literature for solving a number of image classification problems. We distinguish between kernel functions applied to images as a whole and kernel functions looking at image features. We conclude by presenting some current work and discussing open issues.


2020 ◽  
Vol 6 (6) ◽  
pp. 37
Author(s):  
Emmanuel Pintelas ◽  
Meletis Liaskos ◽  
Ioannis E. Livieris ◽  
Sotiris Kotsiantis ◽  
Panagiotis Pintelas

Image classification is a very popular machine learning domain in which deep convolutional neural networks have mainly emerged on such applications. These networks manage to achieve remarkable performance in terms of prediction accuracy but they are considered as black box models since they lack the ability to interpret their inner working mechanism and explain the main reasoning of their predictions. There is a variety of real world tasks, such as medical applications, in which interpretability and explainability play a significant role. Making decisions on critical issues such as cancer prediction utilizing black box models in order to achieve high prediction accuracy but without provision for any sort of explanation for its prediction, accuracy cannot be considered as sufficient and ethnically acceptable. Reasoning and explanation is essential in order to trust these models and support such critical predictions. Nevertheless, the definition and the validation of the quality of a prediction model’s explanation can be considered in general extremely subjective and unclear. In this work, an accurate and interpretable machine learning framework is proposed, for image classification problems able to make high quality explanations. For this task, it is developed a feature extraction and explanation extraction framework, proposing also three basic general conditions which validate the quality of any model’s prediction explanation for any application domain. The feature extraction framework will extract and create transparent and meaningful high level features for images, while the explanation extraction framework will be responsible for creating good explanations relying on these extracted features and the prediction model’s inner function with respect to the proposed conditions. As a case study application, brain tumor magnetic resonance images were utilized for predicting glioma cancer. Our results demonstrate the efficiency of the proposed model since it managed to achieve sufficient prediction accuracy being also interpretable and explainable in simple human terms.


2020 ◽  
Vol 2020 (1) ◽  
pp. 375-1-375-9
Author(s):  
Chanhee Park ◽  
Hyojin Kim ◽  
Kyungwon Lee

Developing machine learning models for image classification problems involves various tasks such as model selection, layer design, and hyperparameter tuning for improving the model performance. However, regarding deep learning models, insufficient model interpretability renders it infeasible to understand how they make predictions. To facilitate model interpretation, performance analysis at the class and instance levels with model visualization is essential. We herein present an interactive visual analytics system to provide a wide range of performance evaluations of different machine learning models for image classification. The proposed system aims to overcome challenges by providing visual performance analysis at different levels and visualizing misclassification instances. The system which comprises five views - ranking, projection, matrix, and instance list views, enables the comparison and analysis different models through user interaction. Several use cases of the proposed system are described and the application of the system based on MNIST data is explained. Our demo app is available at https://chanhee13p.github.io/VisMlic/.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


Sign in / Sign up

Export Citation Format

Share Document