scholarly journals Spatio-temporal dynamics of bacterial communities in the shoreline of Laurentian great Lake Erie and Lake St. Clair’s large freshwater ecosystems

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abdolrazagh Hashemi Shahraki ◽  
Subba Rao Chaganti ◽  
Daniel Heath

Abstract Background Long-term trends in freshwater bacterial community composition (BCC) and dynamics are not yet well characterized, particularly in large lake ecosystems. We addressed this gap by temporally (15 months) and spatially (6 sampling locations) characterizing BCC variation in lakes Erie and St. Clair; two connected ecosystems in the Laurentian Great Lakes. Results We found a spatial variation of the BCC between the two lakes and among the sampling locations (significant changes in the relative abundance of 16% of the identified OTUs at the sampling location level). We observed five distinct temporal clusters (UPGMA broad-scale temporal variation) corresponding to seasonal variation over the 15 months of sampling. Temporal variation among months was high, with significant variation in the relative abundance of 69% of the OTUs. We identified significant differences in taxonomic composition between summer months of 2016 and 2017, with a corresponding significant reduction in the diversity of BCC in summer 2017. Conclusions As bacteria play a key role in biogeochemical cycling, and hence in healthy ecosystem function our study defines the scope for temporal and spatial variation in large lake ecosystems. Our data also show that freshwater BCC could serve as an effective proxy and monitoring tool to access large lake health.

2018 ◽  
Vol 30 (0) ◽  
Author(s):  
Josiane Souza Santos ◽  
Nadson Ressyé Simões ◽  
Sérgio Luiz Sonoda

Abstract Aim: The objective of this study was to investigate the spatial and temporal variation of microcrustacean assemblages of a reservoir in the Brazilian semiarid region. Methods Physical and chemical water variables and samples of microcrustaceans were collected at eight sites of the reservoir between July 2013 and November 2014, in a total of seven campaigns. For this study, the reservoir was categorized in two compartments: lateral and central. Results Limnological variables showed significant temporal variation (PERMANOVA, Pseudo-F = 19.51, p = 0.001). Higher turbidity values and suspended solids were observed in the rainiest months, while during the dry months, we measured higher values of transparency, dissolved oxygen, and chlorophyll-a. It was not found significant spatial variation of limnological variables (PERMANOVA, Pseudo-F = 0.96; p = 0.394). During the study period, ten species were recorded: four Cladocera (Ceriodaphnia cornuta, Daphnia gessneri, Diaphanosoma birgei and Diaphanosoma spinulosum ) three Copepoda Calanoida (Argyrodiaptomus azevedoi, Notodiaptomus cearensis and Notodiaptomus iheringi) and three Copepoda Cyclopoida (Macrocyclops albidus, Thermocyclops minutus and Thermocyclops decipiens). The microcrustacean assemblages showed significant temporal variation (PERMANOVA, Pseudo-F = 4.34; p = 0.001) as well as significant spatial variation (PERMANOVA, Pseudo-F = 9.46; p = 0.001). The highest values of abundance and richness were observed in the lateral compartment, this result is mainly related to the presence of aquatic macrophytes in this region, because the analysis of partial RDA indicated that limnological variables explained only 11% of this variation (Pseudo-F = 2.08, p = 0.001). Conclusions The results suggest that the seasonality of the semiarid is an important factor in the temporal dynamics of the limnological variables, while the aquatic macrophytes play an important role in the spatial distribution of the microcrustacean assembly.


2019 ◽  
Vol 7 (10) ◽  
pp. 410 ◽  
Author(s):  
Qinghua Qiu ◽  
Chaoyu Gao ◽  
Zhibiao Gao ◽  
Muhammad Aziz ur Rahman ◽  
Yang He ◽  
...  

The objective of this study was to explore whether collecting rumen samples of finishing steers at monthly intervals differed, and whether this difference or similarity varied with diets. For these purposes, 12 Chinese Holstein steers were equally divided into two groups. The dietary treatments were either standard energy and standard protein (C) or low energy and low protein (L). Rumen samples were obtained on day 30, day 60 and day 90 from both dietary treatments and were analyzed by using 16S rRNA gene sequencing. The results showed that monthly intervals had no effect on the richness and evenness of the rumen bacterial community in the two diets. However, taxonomic difference analysis (relative abundance >0.5%) revealed that the relative abundance of three phyla (Proteobacteria, Fibrobacteres and Cyanobacteria) and six genera (Rikenellaceae_RC9_gut_group, Ruminococcaceae_NK4A214_group, Fibrobacter, Eubacterium_coprostanoligenes_group, Ruminococcaceae_UCG-010 and Ruminobacter) were significantly different between monthly sampling intervals, and the difference was prominent between sampling in the first month and the subsequent two months. Moreover, the differences in abundances of phyla and genera between monthly sampling intervals were affected by diets. Analysis of similarity (ANOSIM) showed no significant differences between monthly sampling intervals in the C diet. However, ANOSIM results revealed that significant differences between the first month and second month and between the first month and third month were present in the L diet. These results indicated that temporal dynamics in rumen bacterial community composition did occur even after an adaptation period of three months. This study tracked the changes in rumen bacterial populations of finishing cattle after a shift in diet with the passage of time. This study may provide insight into bacterial adaptation time to dietary transition in finishing steers.


2020 ◽  
Vol 10 (17) ◽  
pp. 5850
Author(s):  
Jiaojiao Ma ◽  
Ting Zhou ◽  
Chunyu Xu ◽  
Dawen Shen ◽  
Songjun Xu ◽  
...  

Field and laboratory investigations were conducted to characterize bacterial diversity and community structure in a badly contaminated mangrove wetland adjacent to the metropolitan area of a megacity in subtropical China. Next-generation sequencing technique was used for sequencing the V4–V5 region of the 16s rRNA gene on the Illumina system. Collectively, Proteobacteria, Chloroflexi, Planctomycetes, Actinobacteria and Bacteroidetes were the predominant phyla identified in the investigated soils. A significant spatial variation in bacterial diversity and community structure was observed for the investigated mangrove soils. Heavy metal pollution played a key role in reducing the bacterial diversity. The spatial variation in soil-borne heavy metals shaped the spatial variation in bacterial diversity and community structure in the study area. Other environmental factors such as total carbon and total nitrogen in the soils that are affected by seasonal change in temperature could also influence the bacterial abundance, diversity and community structure though the temporal variation was relatively weaker, as compared to spatial variation. The bacterial diversity index was lower in the investigated site than in the comparable reference site with less contaminated status. The community structure in mangrove soils at the current study site was, to a remarkable extent, different from those in the tropical mangrove wetlands around the world.


2015 ◽  
Vol 112 (22) ◽  
pp. 7045-7050 ◽  
Author(s):  
Andrea Giometto ◽  
Florian Altermatt ◽  
Amos Maritan ◽  
Roman Stocker ◽  
Andrea Rinaldo

Phototaxis, the process through which motile organisms direct their swimming toward or away from light, is implicated in key ecological phenomena (including algal blooms and diel vertical migration) that shape the distribution, diversity, and productivity of phytoplankton and thus energy transfer to higher trophic levels in aquatic ecosystems. Phototaxis also finds important applications in biofuel reactors and microbiopropellers and is argued to serve as a benchmark for the study of biological invasions in heterogeneous environments owing to the ease of generating stochastic light fields. Despite its ecological and technological relevance, an experimentally tested, general theoretical model of phototaxis seems unavailable to date. Here, we present accurate measurements of the behavior of the algaEuglena graciliswhen exposed to controlled light fields. Analysis ofE. gracilis’ phototactic accumulation dynamics over a broad range of light intensities proves that the classic Keller–Segel mathematical framework for taxis provides an accurate description of both positive and negative phototaxis only when phototactic sensitivity is modeled by a generalized “receptor law,” a specific nonlinear response function to light intensity that drives algae toward beneficial light conditions and away from harmful ones. The proposed phototactic model captures the temporal dynamics of both cells’ accumulation toward light sources and their dispersion upon light cessation. The model could thus be of use in integrating models of vertical phytoplankton migrations in marine and freshwater ecosystems, and in the design of bioreactors.


2021 ◽  
Author(s):  
Yihan Cai ◽  
Takahiro Nishimura ◽  
Hideyuki Ida ◽  
Mitsuru Hirota

<p> Soil respiration (Rs) is the second largest carbon flux between the atmosphere and terrestrial ecosystem. Because of the large proportion, even small change in Rs would considerably impact the global carbon cycle. Therefore, it is important to accurately estimate Rs by taking its spatial and temporal variation into consideration. While the temporal variation of Rs and its controlling factors have been well-described, large unexplainable part still has been remained in the spatial variation of Rs especially in the forest ecosystems with complex structures. The objective of this study is to fill the knowledge gap about spatial variation of Rs and its controlling factors in a typical mature beech forest in Japan. Hypotheses of this study were, 1) Rs would show large spatial variation in the mature beech forest, 2) the spatial variation of Rs was mainly influenced by soil water content (SWC) and soil temperature (ST), 3) the two key factors were determined by the forest structures. This study was conducted in a 1- ha permanent study plot in the mature beech forest with significant gap-mosaic structures. To examine these hypotheses, Rs, SWC, ST and parameters related to forest structure, i.e. sum of basal area, diameter at breast height, number of trees, number of species within a radius of 5 m from the Rs measurement points, and canopy openness were measured at 121 points in different season between 2012 to 2013. In this study, all the measurements of Rs were conducted by using alkali-absorption technique.</p><p> Coefficient of variation of Rs was between 25 - 28 % which was similar to that of SWC in all the measurements. The spatial variation of Rs was relatively higher in July, August and September than that in June and October. There was no significant relationship in the spatial variation between Rs and ST in all the measurements, meanwhile, Rs was well explained by SWC in measurements conducted in August, September and October. Multiple linear regression analysis indicated that canopy openness and sum of basal area showed significant positive and negative correlation with SWC, respectively. And canopy openness explained SWC much more than sum of basal area did. This result suggested that SWC, the key factor determined the spatial variation of Rs, cannot be only explained by stems distribution and their characteristics, but also canopy architecture in the forest ecosystem.</p>


2021 ◽  
Vol 4 ◽  
Author(s):  
Joeselle Serrana ◽  
Kozo Watanabe

DNA metabarcoding is a robust method for environmental impact assessments of freshwater ecosystems that enables the simultaneous multi-species identification of complex mixed community samples from different origins using extracellular and total genomic DNA. The development and evaluation of DNA metabarcoding protocols for haplotype level resolution require attention, specifically for basic population genetic applications, i.e., analysis to allow genetic diversity estimations and dispersal abilities of the species present in the bulk community samples. Various literature has proposed using DNA metabarcoding for population genetics, and few studies have provided preliminary applications and proof of concepts that always refer to particular taxa. However, further exploration and assessment of the laboratory and bioinformatics strategies are required to unlock the potential of metabarcoding-based population-level ecological assessments. Here, we assessed the ability to infer haplotype information of freshwater macroinvertebrate species from DNA metabarcoding community sequence. Using mock samples with known Sanger-sequenced haplotypes, we also assayed the effects of PCR cycle for the detection and reduction of spurious haplotypes obtained from DNA metabarcoding. We tested our haplotyping strategy on a mock sample containing 20 specimens from four species with known haplotypes based on the 658-bp Folmer region of the mitochondrial cytochrome c oxidase (mtCOI) gene. The read processing and denoising-step resulted in 14 zero-radius operational taxonomic units (ZOTUs) of 421-bp length, with 12 ZOTUs having 100% match with 12 of the mock haplotype sequences. The remaining eight haplotypes that were not detected from the DNA metabarcoding dataset were all the A. decemseta samples (0.01, 0.05, 0.10 ng/μL DNA template concentrations), two E. bulba (0.01 and 0.05 ng/μL), E. latifolium (0.01 ng/μL), and two K. tibialis (0.01 and 0.10 ng/μL). Given that most of the undetected samples had low concentrations, we report the influence of initial DNA template concentration on the amplification from a mock community sample. Our observation is in accordance with previous studies that reported that samples or taxa with low DNA template concentrations have lower detection probability. Accordingly, abundant taxa or samples with high biomass tend to have higher detection probabilities than those rare, smaller or have low biomass from mixed-community samples. The difference in biomass affects haplotypes' detection since most of the large specimens would be retained after read processing. Hence, these factors need to be addressed when metabarcoding-based haplotyping is to be used to infer abundance-based analysis for population genetics applications. The phylogenetic-based analysis (Fig. 1) revealed that the two ZOTUs without taxonomic matches clustered with one of the species from the mock sample. This supports our observation that only the samples with low concentration were unrepresented from the DNA metabarcoding data. Although we still reported false positive detections because two of the 14 ZOTUs failed to have a 100% match with the mock reference sequences, we could at least identify them as A. decemseta sequences based on the phylogenetic approach. Quality passing reads relatively increased with increasing cycle number, and the relative abundance of each ZOTUs was consistent for each cycle number. This suggests that increasing the cycle number, from 24 to 64, did not affect the relative abundance of quality passing filter reads. Our study demonstrated that DNA metabarcoding data could be used to infer intraspecific variability, showing promise for possible applications in population-based genetic studies. As DNA metabarcoding becomes more established and laboratory protocols and bioinformatics pipelines are continuously being developed, our proof of concept study demonstrated that the method could be used to infer intraspecific variability, showing promise for possible applications on population-based genetic studies.


mSystems ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Sarahi L. Garcia ◽  
Maliheh Mehrshad ◽  
Moritz Buck ◽  
Jackson M. Tsuji ◽  
Josh D. Neufeld ◽  
...  

ABSTRACT Photosynthetic bacteria from the class Chlorobia (formerly phylum Chlorobi) sustain carbon fixation in anoxic water columns. They harvest light at extremely low intensities and use various inorganic electron donors to fix carbon dioxide into biomass. Until now, most information on the functional ecology and local adaptations of Chlorobia members came from isolates and merely 26 sequenced genomes that may not adequately represent natural populations. To address these limitations, we analyzed global metagenomes to profile planktonic Chlorobia cells from the oxyclines of 42 freshwater bodies, spanning subarctic to tropical regions and encompassing all four seasons. We assembled and compiled over 500 genomes, including metagenome-assembled genomes (MAGs), single-amplified genomes (SAGs), and reference genomes from cultures, clustering them into 71 metagenomic operational taxonomic units (mOTUs or “species”). Of the 71 mOTUs, 57 were classified within the genus Chlorobium, and these mOTUs represented up to ∼60% of the microbial communities in the sampled anoxic waters. Several Chlorobium-associated mOTUs were globally distributed, whereas others were endemic to individual lakes. Although most clades encoded the ability to oxidize hydrogen, many lacked genes for the oxidation of specific sulfur and iron substrates. Surprisingly, one globally distributed Scandinavian clade encoded the ability to oxidize hydrogen, sulfur, and iron, suggesting that metabolic versatility facilitated such widespread colonization. Overall, these findings provide new insight into the biogeography of the Chlorobia and the metabolic traits that facilitate niche specialization within lake ecosystems. IMPORTANCE The reconstruction of genomes from metagenomes has helped explore the ecology and evolution of environmental microbiota. We applied this approach to 274 metagenomes collected from diverse freshwater habitats that spanned oxic and anoxic zones, sampling seasons, and latitudes. We demonstrate widespread and abundant distributions of planktonic Chlorobia-associated bacteria in hypolimnetic waters of stratified freshwater ecosystems and show they vary in their capacities to use different electron donors. Having photoautotrophic potential, these Chlorobia members could serve as carbon sources that support metalimnetic and hypolimnetic food webs.


2019 ◽  
Vol 42 (1) ◽  
pp. 3-17 ◽  
Author(s):  
M Jobard ◽  
I Wawrzyniak ◽  
G Bronner ◽  
D Marie ◽  
A Vellet ◽  
...  

Abstract Studies on freshwater Perkinsea are scarce compared to their marine counterparts; they are therefore not well ecologically characterized. In this study, we investigated the diversity, distribution and ecological role of Perkinsea in freshwater ecosystems. Our approach included (1) the phylogenetic analyses of near full-length SSU and LSU sequences of freshwater Perkinsea, (2) a meta-analysis of public Perkinsea 18S ribosomal RNA gene sequences available from the freshwater environments (25 lakes, 4 rivers), (3) microscopic observations of Perkinsea associated with planktonic communities and (4) single amplified genome analysis. Whereas Perkinsea appear to be rare in river ecosystems (85 reads), they are found in almost all of the lakes studied. However, their diversity does vary considerably between lakes (from 0 to 2 463 Operational Taxonomic Units (OTUs)). Phylogenetic analysis showed that the Parvilucifera/Dinovorax/Snorkelia and Perkinsus/Xcellia/Gadixcellia clades resulted from an initial speciation event. This second clade is further split into well-supported, monophyletic groups, including a clade dominated by freshwater representatives, which is further structured into three distinct subclades: freshwater clade 1, freshwater clade 2 and a freshwater and brackish clade. The Perkinsea Single Amplified Genome (SAG) as well as most of the abundant Operational Taxonomic Units (OTUs) fall into freshwater clade 2. The tyramide signal amplification-fluorescent in situ hybridization method showed an internal association between Perkinsea and the colonial phytoplankton Sphaerocystis. The Single Amplified Genome (SAG) annotation contained 698 genes and gene ontology terms could be assigned to 486 protein-coding genes. Although the number of genes appears to be low (10.6% of the entire gene set assessed by BUSCO), the analysis of the proteome revealed some putative secreted virulence factors. This study showed a large distribution of Perkinsea across lake ecosystems and potential parasitic association with phytoplankton. However, further investigations are needed for a better knowledge on the role of these microorganisms in freshwater ecosystems.


2019 ◽  
Vol 96 (1) ◽  
Author(s):  
Stefanie P Glaeser ◽  
Iulian Gabur ◽  
Hossein Haghighi ◽  
Jens-Ole Bartz ◽  
Peter Kämpfer ◽  
...  

ABSTRACT Associations of endophytic bacterial community composition of oilseed rape (Brassica napus L.) with quantitative resistance against the soil-borne fungal pathogen Verticillium longisporum was assessed by 16S rRNA gene amplicon sequencing in roots and hypocotyls of four plant lines with contrasting genetic composition in regard to quantitative resistance reactions. The plant compartment was found to be the dominating driving factor for the specificity of bacterial communities in healthy plants. Furthermore, V. longisporum infection triggered a stabilization of phylogenetic group abundance in replicated samples suggesting a host genotype-specific selection. Genotype-specific associations with bacterial phylogenetic group abundance were identified by comparison of plant genotype groups (resistant versus susceptible) and treatment groups (healthy versus V. longisporum-infected) allowing dissection into constitutive and induced directional association patterns. Relative abundance of Flavobacteria, Pseudomonas, Rhizobium and Cellvibrio was associated with resistance/susceptibility. Relative abundance of Flavobacteria and Cellvibrio was increased in resistant genotypes according to their known ecological functions. In contrast, a higher relative abundance of Pseudomonas and Rhizobium, which are known to harbor many species with antagonistic properties to fungal pathogens, was found to be associated with susceptibility, indicating that these groups do not play a major role in genetically controlled resistance of oilseed rape against V. longisporum.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Feng Zhang ◽  
Mengqing Geng ◽  
Qiulan Wu ◽  
Yong Liang

Abstract It is of great significance for the efficient utilization of water resources and the construction of the ecological environment in China to fully understand the evolution process of the spatial-temporal pattern of evapotranspiration (ET). With the use of the v2.0 and v2.1 ET data sets combined with the Global Land Data Assimilation System and Noah model, this paper selects pixels as the basic research object to analyse the spatial-temporal variation in ET in China during the 71 years from 1948 to 2018. We first applied the TFPW-MK test to study the annual ET trend in China throughout the 71-year period, including the ET trend of each month from January to December and the annual total ET trend. Moreover, we examined the spatial variation in these trends. In addition, we calculated the variation coefficient of the time series of each pixel’s ET throughout the 71-year period and the variation coefficient of the spatial distribution of ET in each year to analyse the spatial-temporal fluctuations in ET in the study area. Finally, the Hurst index was adopted to evaluate the future ET trend. Based on these analyses, we observed the following novel spatial-temporal characteristics of ET: from 1948 to 2018, (1) the ET in most regions covered by 89.5% of all pixels in China exhibits an increasing trend. (2) The ET trend in China varies greatly with the change in months, and many regions show the most or least obvious increasing trend (or decreasing trend) at different times. (3) The area with an increasing trend is the largest in May and the smallest in December, and more than half of the pixels in all months of a year reveal an increasing trend. (4) In the northeast, west and south regions of China, the monthly fluctuation in the ET trend is relatively large, which indicates that the ET trend in these regions is greatly affected by the month. (5) The fluctuation in ET in China is larger in the north than it is in the south and larger in the west than it is in the east. The most stable fluctuation occurs in East China. (6) The ET trend of almost all the pixels in the study area remains consistent from 1948 to 2018, and there are large areas with a notable continuity. This results in the spatial variation in ET in the study area increasing.


Sign in / Sign up

Export Citation Format

Share Document