scholarly journals Genome-wide identification of brain miRNAs in response to high-intensity intermittent swimming training in Rattus norvegicus by deep sequencing

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yanhong Zhao ◽  
Anmin Zhang ◽  
Yanfang Wang ◽  
Shuping Hu ◽  
Ruiping Zhang ◽  
...  
mBio ◽  
2021 ◽  
Author(s):  
Dalin Rifat ◽  
Liang Chen ◽  
Barry N. Kreiswirth ◽  
Eric L. Nuermberger

Limited knowledge regarding Mycobacterium abscessus pathogenesis and intrinsic resistance to most classes of antibiotics is a major obstacle to developing more effective strategies to prevent and mitigate disease. Using optimized procedures for Himar1 transposon mutagenesis and deep sequencing, we performed a comprehensive analysis to identify M. abscessus genetic elements essential for in vitro growth and compare them to similar data sets for M. tuberculosis and M. avium subsp. hominissuis .


BMC Genomics ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 187 ◽  
Author(s):  
Chitvan Khajuria ◽  
Christie E Williams ◽  
Mustapha El Bouhssini ◽  
R Jeff Whitworth ◽  
Stephen Richards ◽  
...  

2013 ◽  
Vol 19 (8) ◽  
pp. 1035-1045 ◽  
Author(s):  
Jun-ichi Satoh ◽  
Hiroko Tabunoki

Background: Vitamin D is a liposoluble vitamin essential for calcium metabolism. The ligand-bound vitamin D receptor (VDR), heterodimerized with retinoid X receptor, interacts with vitamin D response elements (VDREs) to regulate gene expression. Vitamin D deficiency due to insufficient sunlight exposure confers an increased risk for multiple sclerosis (MS). Objective: To study a protective role of vitamin D in multiple sclerosis (MS), it is important to characterize the global molecular network of VDR target genes (VDRTGs) in immune cells. Methods: We identified genome-wide VDRTGs collectively from two distinct chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) datasets of VDR-binding sites derived from calcitriol-treated human cells of B cell and monocyte origins. We mapped short reads of next generation sequencing (NGS) data on hg19 with Bowtie, detected the peaks with Model-based Analysis of ChIP-Seq (MACS), and identified genomic locations by GenomeJack, a novel genome viewer for NGS platforms. Results: We found 2997 stringent peaks distributed on protein-coding genes, chiefly located in the promoter and the intron on VDRE DR3 sequences. However, the corresponding transcriptome data verified calcitriol-induced upregulation of only a small set of VDRTGs. The molecular network of 1541 calcitriol-responsive VDRTGs showed a significant relationship with leukocyte transendothelial migration, Fcγ receptor-mediated phagocytosis, and transcriptional regulation by VDR, suggesting a pivotal role of genome-wide VDRTGs in immune regulation. Conclusion: These results suggest the working hypothesis that persistent deficiency of vitamin D might perturb the complex network of VDRTGs in immune cells, being responsible for induction of an autoimmune response causative for MS.


Sign in / Sign up

Export Citation Format

Share Document