scholarly journals Role of phasiRNAs from two distinct phasing frames of GhMYB2 loci in cis- gene regulation in the cotton genome

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ting Zhao ◽  
Xiaoyuan Tao ◽  
Menglin Li ◽  
Mengtao Gao ◽  
Jiedan Chen ◽  
...  
Keyword(s):  
2021 ◽  
Vol 67 ◽  
pp. 119-129
Author(s):  
Gabriel R Cavalheiro ◽  
Tim Pollex ◽  
Eileen EM Furlong

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2547
Author(s):  
Keunsoo Kang ◽  
Yoonjung Choi ◽  
Hyeonjin Moon ◽  
Chaelin You ◽  
Minjin Seo ◽  
...  

RAD51 is a recombinase that plays a pivotal role in homologous recombination. Although the role of RAD51 in homologous recombination has been extensively studied, it is unclear whether RAD51 can be involved in gene regulation as a co-factor. In this study, we found evidence that RAD51 may contribute to the regulation of genes involved in the autophagy pathway with E-box proteins such as USF1, USF2, and/or MITF in GM12878, HepG2, K562, and MCF-7 cell lines. The canonical USF binding motif (CACGTG) was significantly identified at RAD51-bound cis-regulatory elements in all four cell lines. In addition, genome-wide USF1, USF2, and/or MITF-binding regions significantly coincided with the RAD51-associated cis-regulatory elements in the same cell line. Interestingly, the promoters of genes associated with the autophagy pathway, such as ATG3 and ATG5, were significantly occupied by RAD51 and regulated by RAD51 in HepG2 and MCF-7 cell lines. Taken together, these results unveiled a novel role of RAD51 and provided evidence that RAD51-associated cis-regulatory elements could possibly be involved in regulating autophagy-related genes with E-box binding proteins.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cristian Carmeli ◽  
Zoltán Kutalik ◽  
Pashupati P. Mishra ◽  
Eleonora Porcu ◽  
Cyrille Delpierre ◽  
...  

AbstractIndividuals experiencing socioeconomic disadvantage in childhood have a higher rate of inflammation-related diseases decades later. Little is known about the mechanisms linking early life experiences to the functioning of the immune system in adulthood. To address this, we explore the relationship across social-to-biological layers of early life social exposures on levels of adulthood inflammation and the mediating role of gene regulatory mechanisms, epigenetic and transcriptomic profiling from blood, in 2,329 individuals from two European cohort studies. Consistently across both studies, we find transcriptional activity explains a substantive proportion (78% and 26%) of the estimated effect of early life disadvantaged social exposures on levels of adulthood inflammation. Furthermore, we show that mechanisms other than cis DNA methylation may regulate those transcriptional fingerprints. These results further our understanding of social-to-biological transitions by pinpointing the role of gene regulation that cannot fully be explained by differential cis DNA methylation.


Cell ◽  
2009 ◽  
Vol 136 (6) ◽  
pp. 1056-1072 ◽  
Author(s):  
Roger H.F. Wong ◽  
Inhwan Chang ◽  
Carolyn S.S. Hudak ◽  
Suzanne Hyun ◽  
Hiu-Yee Kwan ◽  
...  

2008 ◽  
Vol 190 (19) ◽  
pp. 6398-6408 ◽  
Author(s):  
Torsten Sterzenbach ◽  
Lucie Bartonickova ◽  
Wiebke Behrens ◽  
Birgit Brenneke ◽  
Jessika Schulze ◽  
...  

ABSTRACT The enterohepatic Helicobacter species Helicobacter hepaticus colonizes the murine intestinal and hepatobiliary tract and is associated with chronic intestinal inflammation, gall stone formation, hepatitis, and hepatocellular carcinoma. Thus far, the role of H. hepaticus motility and flagella in intestinal colonization is unknown. In other, closely related bacteria, late flagellar genes are mainly regulated by the sigma factor FliA (σ28). We investigated the function of the H. hepaticus FliA in gene regulation, flagellar biosynthesis, motility, and murine colonization. Competitive microarray analysis of the wild type versus an isogenic fliA mutant revealed that 11 genes were significantly more highly expressed in wild-type bacteria and 2 genes were significantly more highly expressed in the fliA mutant. Most of these were flagellar genes, but four novel FliA-regulated genes of unknown function were identified. H. hepaticus possesses two identical copies of the gene encoding the FliA-dependent major flagellin subunit FlaA (open reading frames HH1364 and HH1653). We characterized the phenotypes of mutants in which fliA or one or both copies of the flaA gene were knocked out. flaA_1 flaA_2 double mutants and fliA mutants did not synthesize detectable amounts of FlaA and possessed severely truncated flagella. Also, both mutants were nonmotile and unable to colonize mice. Mutants with either flaA gene knocked out produced flagella morphologically similar to those of wild-type bacteria and expressed FlaA and FlaB. flaA_1 mutants which had flagella but displayed reduced motility did not colonize mice, indicating that motility is required for intestinal colonization by H. hepaticus and that the presence of flagella alone is not sufficient.


2006 ◽  
Vol 72 (3) ◽  
pp. 1771-1776 ◽  
Author(s):  
Claudia Stein ◽  
Gareth W. Jones ◽  
Tanya Chalmers ◽  
Colin Berry

ABSTRACT In Bacillus thuringiensis subsp. israelensis all of the insecticidal toxins are encoded on a single, large plasmid, pBtoxis. Sequencing of this plasmid revealed 125 potential coding sequences, many of which have predicted functions in gene regulation and physiological processes, such as germination. As a first step in understanding the possible role of pBtoxis in its host bacterium, a survey of the transcription of genes with predicted functions was carried out. Whereas many coding sequences, including those previously identified as probable pseudogenes, were not transcribed, mRNA was detected for 29 of the 40 sequences surveyed. Several of these sequences, including eight with similarities to the sequences of known transcriptional regulators, may influence wider gene regulation and thus may alter the phenotype of the host bacterium.


Sign in / Sign up

Export Citation Format

Share Document