scholarly journals Genome-wide identification and expression analysis of the CLC gene family in pomegranate (Punica granatum) reveals its roles in salt resistance

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Cuiyu Liu ◽  
Yujie Zhao ◽  
Xueqing Zhao ◽  
Jianmei Dong ◽  
Zhaohe Yuan

Abstract Backgrounds Pomegranate (Punica granatum L.) is an important commercial fruit tree, with moderate tolerance to salinity. The balance of Cl− and other anions in pomegranate tissues are affected by salinity, however, the accumulation patterns of anions are poorly understood. The chloride channel (CLC) gene family is involved in conducting Cl−, NO3−, HCO3− and I−, but its characteristics have not been reported on pomegranate. Results In this study, we identified seven PgCLC genes, consisting of four antiporters and three channels, based on the presence of the gating glutamate (E) and the proton glutamate (E). Phylogenetic analysis revealed that seven PgCLCs were divided into two clades, with clade I containing the typical conserved regions GxGIPE (I), GKxGPxxH (II) and PxxGxLF (III), whereas clade II not. Multiple sequence alignment revealed that PgCLC-B had a P [proline, Pro] residue in region I, which was suspected to be a NO3−/H+ exchanger, while PgCLC-C1, PgCLC-C2, PgCLC-D and PgCLC-G contained a S [serine, Ser] residue, with a high affinity to Cl−. We determined the content of Cl−, NO3−, H2PO4−, and SO42− in pomegranate tissues after 18 days of salt treatments (0, 100, 200 and 300 mM NaCl). Compared with control, the Cl− content increased sharply in pomegranate tissues. Salinity inhibited the uptake of NO3− and SO42−, but accelerated H2PO4− uptake. The results of real-time reverse transcription PCR (qRT-PCR) revealed that PgCLC genes had tissue-specific expression patterns. The high expression levels of three antiporters PgCLC-C1, PgCLC-C2 and PgCLC-D in leaves might be contributed to sequestrating Cl− into the vacuoles. However, the low expression levels of PgCLCs in roots might be associated with the exclusion of Cl− from root cells. Also, the up-regulated PgCLC-B in leaves indicated that more NO3− was transported into leaves to mitigate the nitrogen deficiency. Conclusions Our findings suggested that the PgCLC genes played important roles in balancing of Cl− and NO3− in pomegranate tissues under salt stress. This study established a theoretical foundation for the further functional characterization of the CLC genes in pomegranate.

2020 ◽  
Author(s):  
Cuiyu Liu ◽  
Yujie Zhao ◽  
Xueqing Zhao ◽  
Jianmei Dong ◽  
Zhaohe Yuan

Abstract Backgrounds: Pomegranate (Punica granatum L.) is an important commercial fruit tree, with moderate tolerance to salinity. The balance of Cl− and other anions in pomegranate tissues are affected by salinity, however, the accumulation patterns of anions are poorly understood. The chloride channel (CLC) gene family is involved in conducting Cl−, NO3−, HCO3− and I−, but its characteristics have not been reported on pomegranate.Results: In this study, we identified seven PgCLC genes, consisting of four antiporters and three channels, based on the presence of the gating glutamate (E) and the proton glutamate (E). Phylogenetic analysis revealed that seven PgCLCs were divided into two clades, with clade I containing the typical conserved regions GxGIPE (I), GKxGPxxH (II) and PxxGxLF (III), whereas clade II not. Multiple sequence alignment revealed that PgCLC-B had a P [proline, Pro] residue in region I, which was suspected to be a NO3–/H+ exchanger, while PgCLC-C1, PgCLC-C2, PgCLC-D and PgCLC-G contained a S [serine, Ser] residue, with a high affinity to Cl−. We determined the content of Cl−, NO3−, H2PO4−, and SO42− in pomegranate tissues after 18 days of salt treatments (0, 100, 200 and 300 mM NaCl). Compared with control, the Cl− content increased sharply in pomegranate tissues. Salinity inhibited the uptake of NO3− and SO42− , but accelerated H2PO4− uptake. The results of real-time reverse transcription PCR (qRT-PCR) revealed that PgCLC genes had tissue-specific expression patterns. The high expression levels of three antiporters PgCLC-C1, PgCLC-C2 and PgCLC-D in leaves might be contributed to sequestrating Cl− into the vacuoles. However, the low expression levels of PgCLCs in roots might be associated with the exclusion of Cl− from root cells. Also, the up-regulated PgCLC-B in leaves indicated that more NO3− was transported into leaves to mitigate the nitrogen deficiency.Conclusions: Our findings suggested that the PgCLC genes played important roles in balancing of Cl− and NO3− in pomegranate tissues under salt stress. This study establishes a theoretical foundation for the further functional characterization of CLC genes in pomegranate.


2020 ◽  
Author(s):  
Cuiyu Liu ◽  
Yujie Zhao ◽  
Xueqing Zhao ◽  
Jianmei Dong ◽  
Zhaohe Yuan

Abstract Backgrounds: Pomegranate (Punica granatum L.) is an important commercial fruit tree, with moderate tolerance to salinity. The balance of Cl− and other anions in pomegranate tissues are affected by salinity, however, the accumulation patterns of anions are poorly understood. The chloride channel (CLC) gene family is involved in conducting Cl−, NO3−, HCO3− and I−, but its characteristics have not been reported on pomegranate.Results: In this study, we identified seven PgCLC genes, consisting of four antiporters and three channels, based on the presence of the gating glutamate (E) and the proton glutamate (E). Phylogenetic analysis revealed that seven PgCLCs were divided into two clades, with clade I containing the typical conserved regions GxGIPE (I), GKxGPxxH (II) and PxxGxLF (III), whereas clade II not. Multiple sequence alignment revealed that PgCLC-B had a P [proline, Pro] residue in region I, which was suspected to be a NO3–/H+ exchanger, while PgCLC-C1, PgCLC-C2, PgCLC-D and PgCLC-G contained a S [serine, Ser] residue, with a high affinity to Cl−. We determined the content of Cl−, NO3−, H2PO4−, and SO42− in pomegranate tissues after 18 days of salt treatments (0, 100, 200 and 300 mM NaCl). Compared with control, the Cl− content increased sharply in pomegranate tissues. Salinity inhibited the uptake of NO3− and SO42− , but accelerated H2PO4− uptake. The results of real-time reverse transcription PCR (qRT-PCR) revealed that PgCLC genes had tissue-specific expression patterns. The high expression levels of three antiporters PgCLC-C1, PgCLC-C2 and PgCLC-D in leaves might be contributed to sequestrating Cl− into the vacuoles. However, the low expression levels of PgCLCs in roots might be associated with the exclusion of Cl− from root cells. Also, the up-regulated PgCLC-B in leaves indicated that more NO3− was transported into leaves to mitigate the nitrogen deficiency.Conclusions: Our findings suggested that the PgCLC genes played important roles in balancing of Cl− and NO3− in pomegranate tissues under salt stress. This study established a theoretical foundation for the further functional characterization of CLC genes in pomegranate.


2020 ◽  
Author(s):  
Cuiyu Liu ◽  
Yujie Zhao ◽  
Xueqing Zhao ◽  
Jianmei Dong ◽  
Zhaohe Yuan

Abstract BackgroundsPomegranate (Punica granatum L.) is an important commercial fruit tree, with moderate tolerance to salinity. The balance of Cl− and other anions in pomegranate tissues are affected by salinity, however, the accumulation patterns of anions are poorly understood. The chloride channel (CLC) gene family is involved in conducting Cl−, NO3−, HCO3− and I−, but its characteristics have not been reported on pomegranate.ResultsIn this study, we identified seven PgCLC genes, consisting of four antiporters and three channels, based on the presence of the gating glutamate (E) and the proton glutamate (E). Phylogenetic analysis revealed that seven PgCLCs were divided into two clades, with clade I containing the typical conserved regions GxGIPE (I), GKxGPxxH (II) and PxxGxLF (III), whereas clade II not. Multiple sequence alignment revealed that PgCLC-B had a P [proline, Pro] residue in region I, which is suspected to be a NO3–/H+ exchanger, while PgCLC-C1, PgCLC-C2, PgCLC-D and PgCLC-G contained a S [serine, Ser] residue, with a high affinity to Cl−. We were determined the content of Cl−, NO3−, H2PO4−, and SO42− in pomegranate tissues after 18 days of salt treatments (0, 100, 200 and 300 mM NaCl). Compared with control, the Cl− content increased sharply in tissues and was ranked as leaf > stem > root. The uptake of NO3− and SO42− was inhibited by high salinity, while that of H2PO4− increased. The results of real-time reverse transcription PCR (qRT-PCR) revealed that PgCLC genes had tissue-specific expression patterns. The high expression levels of PgCLC-C1, PgCLC-C2 and PgCLC-D in leaves suggested they played roles in sequestrating Cl− into the vacuoles. However, the low expression levels of PgCLCs in roots might be contributed to the exclusion of Cl− from root cells. Also, the non-significantly changed concentration of NO3− in leaves and the up-regulated PgCLC-B indicated an acceleration of transporting NO3− into leaves to mitigate the nitrogen deficiency.ConclusionsOur findings suggested that PgCLC genes played important roles in balance of Cl− and NO3− in pomegranate tissues under salt stress. This study establishes a theoretical foundation for the further functional characterization of CLC genes in pomegranate.


2019 ◽  
Vol 20 (23) ◽  
pp. 5974 ◽  
Author(s):  
Xian Liu ◽  
Zhiguo Liu ◽  
Xinhui Niu ◽  
Qian Xu ◽  
Long Yang

NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), and its paralogues NPR3 and NPR4, are bona fide salicylic acid (SA) receptors and play critical regulatory roles in plant immunity. However, comprehensive identification and analysis of the NPR1-like gene family had not been conducted so far in bread wheat and its relatives. Here, a total of 17 NPR genes in Triticum aestivum, five NPR genes in Triticum urartu, 12 NPR genes in Triticum dicoccoides, and six NPR genes in Aegilops tauschii were identified using bioinformatics approaches. Protein properties of these putative NPR1-like genes were also described. Phylogenetic analysis showed that the 40 NPR1-like proteins, together with 40 NPR1-related proteins from other plant species, were clustered into three major clades. The TaNPR1-like genes belonging to the same Arabidopsis subfamilies shared similar exon-intron patterns and protein domain compositions, as well as conserved motifs and amino acid residues. The cis-regulatory elements related to SA were identified in the promoter regions of TaNPR1-like genes. The TaNPR1-like genes were intensively mapped on the chromosomes of homoeologous groups 3, 4, and 5, except TaNPR2-D. Chromosomal distribution and collinearity analysis of NPR1-like genes among bread wheat and its relatives revealed that the evolution of this gene family was more conservative following formation of hexaploid wheat. Transcriptome data analysis indicated that TaNPR1-like genes exhibited tissue/organ-specific expression patterns and some members were induced under biotic stress. These findings lay the foundation for further functional characterization of NPR1-like proteins in bread wheat and its relatives.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1452
Author(s):  
Hui Huang ◽  
Hui Wang ◽  
Yan Tong ◽  
Yuhua Wang

Dendrobium catenatum is a member of epiphytic orchids with extensive range of pharmacological properties and ornamental values. Superoxide dismutase (SOD), a key member of antioxidant system, plays a vital role in protecting plants against oxidative damage caused by various biotic and abiotic stresses. So far, little is known about the SOD gene family in D. catenatum. In this study, eight SOD genes, including four Cu/ZnSODs, three FeSODs and one MnSOD, were identified in D. catenatum genome. Phylogenetic analyses of SOD proteins in D. catenatum and several other species revealed that these SOD proteins can be assigned to three subfamilies based on their metal co-factors. Moreover, the similarities in conserved motifs and gene structures in the same subfamily corroborated their classification and inferred evolutionary relationships. There were many hormone and stress response elements in DcaSODs, of which light responsiveness elements was the largest group. All DcaSODs displayed tissue-specific expression patterns and exhibited abundant expression levels in flower and leaf. According to public RNA-seq data and qRT-PCR analysis showed that the almost DcaSODs, except for DcaFSD2, were highly expressed under cold and drought treatments. Under heat, light, and salt stresses, DcaCSD1, DcaCSD2, DcaCSD3 were always significantly up-regulated, which may play a vital role in coping with various stresses. The expression levels of DcaFSD1 and DcaFSD2 were promoted by high light, suggesting their important roles in light response. These findings provided valuable information for further research on DcaSODs in D. catenatum.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 264
Author(s):  
Jianmei Dong ◽  
Cuiyu Liu ◽  
Yuying Wang ◽  
Yujie Zhao ◽  
Dapeng Ge ◽  
...  

Most cultivated lands are suffering from soil salinization, which is a global problem affecting agricultural development and economy. High NaCl concentrations in the soil result in the accumulation of toxic Cl− and Na+ in plants. Na+/H+ antiporter (NHX) can regulate Na+ compartmentalization or efflux to reduce Na+ toxicity. This study aims to identify the NHX genes in pomegranate (Punica granatum L.) from the genome sequences and investigate their expression patterns under different concentrations of NaCl stress. In this study, we used the sequences of PgNHXs to analyze the physicochemical properties, phylogenetic evolution, conserved motifs, gene structures, cis-acting elements, protein tertiary structure and expression pattern. A total of 10 PgNHX genes were identified, and divided into three clades. Conserved motifs and gene structures showed that most of them had an amiloride-binding site (FFI/LY/FLLPPI), except for the members of clade III. There were multiple cis-acting elements involved in abiotic stress in PgNHX genes. Additionally, protein-protein interaction network analysis suggested that PgNHXs might play crucial roles in keeping a balance of Na+ in cells. The qRT-PCR analysis suggested that PgNHXs had tissue-specific expressional patterns under salt stress. Overall, our findings indicated that the PgNHXs could play significant roles in response to salt stress. The theoretical foundation was established in the present study for the further functional characterization of the NHX gene family in pomegranate.


2020 ◽  
Vol 7 (2) ◽  
pp. 206-213
Author(s):  
Thiveyarajan Victorathisayam ◽  
Madhvi Kanchan ◽  
` Himani ◽  
Thandullu R. Suriyanarayanan ◽  
Jaspreet K. Sembi ◽  
...  

Vanilla planifolia is an economically important orchid, which is being commercially exploited by the food industry for the highly valued secondary metabolite vanillin. WUSCHEL-related homeobox (WOX) gene family encodes for WUSCHEL-related homeobox (WOX) transcription factors that participate in embryogenesis, organogenesis and florigenesis and in diverse plant developmental processes as well. In the present study, we analysed V. planifolia transcriptome and identified 6 WOX (VpWOX) transcripts, that encode putative WOX (VpWOX) transcription factor proteins. Domain analysis was done which indicates the presence of helix-loop-helix-turn-helix which is identifying feature of WOX gene family proteins. We executed phylogenetic clustering for the VpWOX proteins with their counterpart from the model plant Arabidopsis thaliana (AtWOX) and other closely related orchid species, Phalaenopsis equestris (PeWOX), Dendrobium catenatum (DcWOX) and Apostasia shenzhenica (AsWOX) and established their clade specific grouping. Spatio-temporal expression profile for VpWOX genes was analysed for different plant developmental stages which shows that VpWOX13 is expressing uniformly in all the developmental stages whereas, other genes have tissue specific expression. Based on gene expression patterns, we selected four VpWOX proteins and carried out secondary and tertiary structural analysis which indicates the presence of alpha helix and beta turn in the protein structure. The present study provides basic understanding of the functioning of WOX gene family in V. planifolia and paves the path for functional characterization of selected VpWOX genes in planta and in heterologous system in future for commercial utilization.


2021 ◽  
Author(s):  
Cuili Pan ◽  
Shuzhe Wang ◽  
Chaoyun Yang ◽  
Chunli Hu ◽  
Hui Sheng ◽  
...  

Abstract Wnt is a family of conserved glycoproteins that functions in a variety of crucial biological processes including tissue regeneration, animal development, and cell proliferation and differentiation. For its functional diversity and importance, Wnt gene family has gained considerable research interest in a variety of species. However, comprehensive identification and analysis of Wnt genes in Bovinae is lacking. In this study, we identified the repertoire of Wnt genes in cattle and seven other species of Bovinae and obtained 19 Wnt genes. Protein properties of these Wnt genes were also described. Phylogenetic analysis showed that the 149 Wnt proteins in Bovinae, together with 38 Wnt proteins from human and mouse, were clustered into 12 major clades. The Wnt genes belonging to the same subfamilies shared similar protein motif compositions and exon-intron patterns. Chromosomal distribution and collinearity analysis of Wnt genes among cattle and five species of Bovinae revealed that this gene family was conservative in evolution. RNA-seq data analysis indicated that Wnt genes exhibited tissue-specific expression patterns in cattle. qPCR analysis of Wnt gene family showed that each gene had a unique expression pattern during bovine adipocytes differentiation. And the comprehensive analysis indicated that Wnt2B may regulate adipose differentiation through activation of FZD5, which is worthy of further study. Our study presents the first genome-wide study of Wnt gene family in Bovinae, and lay the foundation for further functional characterization of the Wnt family in bovine adipocytes differentiation.


2019 ◽  
Vol 20 (22) ◽  
pp. 5796
Author(s):  
Qianqian Zhou ◽  
Qingchang Li ◽  
Peng Li ◽  
Songtao Zhang ◽  
Che Liu ◽  
...  

Carotenoid cleavage dioxygenases (CCDs) selectively catalyze carotenoids, forming smaller apocarotenoids that are essential for the synthesis of apocarotenoid flavor, aroma volatiles, and phytohormone ABA/SLs, as well as responses to abiotic stresses. Here, 19, 11, and 10 CCD genes were identified in Nicotiana tabacum, Nicotiana tomentosiformis, and Nicotiana sylvestris, respectively. For this family, we systematically analyzed phylogeny, gene structure, conserved motifs, gene duplications, cis-elements, subcellular and chromosomal localization, miRNA-target sites, expression patterns with different treatments, and molecular evolution. CCD genes were classified into two subfamilies and nine groups. Gene structures, motifs, and tertiary structures showed similarities within the same groups. Subcellular localization analysis predicted that CCD family genes are cytoplasmic and plastid-localized, which was confirmed experimentally. Evolutionary analysis showed that purifying selection dominated the evolution of these genes. Meanwhile, seven positive sites were identified on the ancestor branch of the tobacco CCD subfamily. Cis-regulatory elements of the CCD promoters were mainly involved in light-responsiveness, hormone treatment, and physiological stress. Different CCD family genes were predominantly expressed separately in roots, flowers, seeds, and leaves and exhibited divergent expression patterns with different hormones (ABA, MeJA, IAA, SA) and abiotic (drought, cold, heat) stresses. This study provides a comprehensive overview of the NtCCD gene family and a foundation for future functional characterization of individual genes.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Amany H. Abdelrahman ◽  
Ola M. Eid ◽  
Mona H. Ibrahim ◽  
Safa N. Abd El-Fattah ◽  
Maha M. Eid ◽  
...  

Abstract Background Autism spectrum disorder is a condition related to brain development that affects a person’s perception and socialization, resulting in problems in social interaction and communication. It has no single known cause, yet several different genes appear to be involved in autism. As a genetically complex disease, dysregulation of miRNA expression and miRNA–mRNA interactions might be a feature of autism spectrum disorder. The aim of the current study was to investigate the expression profile of circulating miRNA-128, miRNA-7 and SHANK gene family in ASD patients and to assess the possible influence of miRNA-128 and miRNA-7 on SHANK genes, which might provide an insight into the pathogenic mechanisms of ASD and introduce noninvasive molecular biomarkers for the disease diagnosis and prognosis. Quantitative real-time PCR technique was employed to determine expression levels of miRNA-128, miRNA-7 and SHANK gene family in blood samples of 40 autistic cases along with 30 age- and sex-matched normal volunteer subjects. Results Our study revealed a statistical significant upregulation of miRNA-128 expression levels in ASD cases compared to controls (p value < 0.001). A statistical significant difference in SHANK-3 expression was encountered on comparing cases to controls (p value < 0.001). However, miRNA-7 expression showed no significant difference between the studied groups. Conclusions MiRNA-128 and SHANK-3 gene are emerging players in the field of ASD. They are promising candidates as noninvasive biomarkers in autism. Future studies are needed to emphasize their pivotal role.


Sign in / Sign up

Export Citation Format

Share Document