scholarly journals Effects of Antisense Thioredoxin s on Starch Accumulation and Expressions of Enzymes Related to Starch Synthesis in Weak-gluten Wheat Cultivar Yumai 18

2013 ◽  
Vol 39 (10) ◽  
pp. 1856
Author(s):  
Jiang-Ping REN ◽  
Ya-Ying WANG ◽  
Xin-Guo WANG ◽  
Na WANG ◽  
Xin CHEN ◽  
...  
2007 ◽  
Vol 6 (7) ◽  
pp. 808-815 ◽  
Author(s):  
Hai-yan ZHANG ◽  
Shu-ting DONG ◽  
Rong-qi GAO ◽  
Qing-quan SUN

1994 ◽  
Vol 21 (6) ◽  
pp. 829 ◽  
Author(s):  
GW Singletary ◽  
R Banisadr ◽  
PL Keeling

Heat stress during maize seed development can interfere with endosperm starch biosynthesis and reduce seed size, an important component of yield. Our objectives were to evaluate the direct influence of temperature during grain filling on kernel growth, carbohydrate accumulation, and corresponding endosperm metabolism. Kernels of maize were grown in vitro at 25�C until 15 or 16 days after pollination and then subjected to various temperatures for the remainder of their development. Mature kernel dry weight declined 45% in a linear fashion between 22 and 36�C. The rate of starch accumulation reached a maximum at approximately 32�C, and when measured at frequent intervals, declined only slightly with further temperature increase to 35�C. Reduced seed size resulted from an abbreviated duration of starch-related metabolism, which did not appear to be limited by endogenous sugars. Instead, a survey of 12 enzymes of sugar and starch metabolism indicated that ADP glucose pyrophosphorylase and soluble starch synthase were unique in displaying developmental peaks of activity which were compressed both in amount and time, similar to the effect of temperature on starch accumulation. We conclude that decreased starch synthesis in heat-stressed maize kernels results from a premature decline in the activity of these enzymes.


2020 ◽  
Vol 117 (52) ◽  
pp. 33177-33185
Author(s):  
Camila Ribeiro ◽  
Tracie A. Hennen-Bierwagen ◽  
Alan M. Myers ◽  
Kenneth Cline ◽  
A. Mark Settles

Endosperm starch synthesis is a primary determinant of grain yield and is sensitive to high-temperature stress. The maize chloroplast-localized 6-phosphogluconate dehydrogenase (6PGDH), PGD3, is critical for endosperm starch accumulation. Maize also has two cytosolic isozymes, PGD1 and PGD2, that are not required for kernel development. We found that cytosolic PGD1 and PGD2 isozymes have heat-stable activity, while amyloplast-localized PGD3 activity is labile under heat stress conditions. We targeted heat-stable 6PGDH to endosperm amyloplasts by fusing the Waxy1 chloroplast targeting the peptide coding sequence to the Pgd1 and Pgd2 open reading frames (ORFs). These WPGD1 and WPGD2 fusion proteins import into isolated chloroplasts, demonstrating a functional targeting sequence. Transgenic maize plants expressing WPGD1 and WPGD2 with an endosperm-specific promoter increased 6PGDH activity with enhanced heat stability in vitro. WPGD1 and WPGD2 transgenes complement the pgd3-defective kernel phenotype, indicating the fusion proteins are targeted to the amyloplast. In the field, the WPGD1 and WPGD2 transgenes can mitigate grain yield losses in high–nighttime-temperature conditions by increasing kernel number. These results provide insight into the subcellular distribution of metabolic activities in the endosperm and suggest the amyloplast pentose phosphate pathway is a heat-sensitive step in maize kernel metabolism that contributes to yield loss during heat stress.


2009 ◽  
Vol 2009 ◽  
pp. 1-23 ◽  
Author(s):  
Boryana S. Stamova ◽  
Debbie Laudencia-Chingcuanco ◽  
Diane M. Beckles

The expression of genes involved in starch synthesis in wheat was analyzed together with the accumulation profiles of soluble sugars, starch, protein, and starch granule distribution in developing caryopses obtained from the same biological materials used for profiling of gene expression using DNA microarrays. Multiple expression patterns were detected for the different starch biosynthetic gene isoforms, suggesting their relative importance through caryopsis development. Members of the ADP-glucose pyrophosphorylase, starch synthase, starch branching enzyme, and sucrose synthase gene families showed different expression profiles; expression of some members of these gene families coincided with a period of high accumulation of starch while others did not. A biphasic pattern was observed in the rates of starch and protein accumulation which paralleled changes in global gene expression. Metabolic and regulatory genes that show a pattern of expression similar to starch accumulation and granule size distribution were identified, suggesting their coinvolvement in these biological processes.


2022 ◽  
Vol 52 (4) ◽  
Author(s):  
Wang Su ◽  
Guangji Ye ◽  
Yun Zhou ◽  
Jian Wang

ABSTRACT: Biosynthesis is the only source of potato starch which is an important raw material for food processing, modified starch and biomass energy. However, it is not clear about the evolution of starch synthesis with tuber development in potato. The present study evaluated the differences of starch synthesis and gelatinization properties of potato tubers with different starch content. Relative to cultivars of medium and low starch content, cultivars of high starch content showed significantly higher SBEII gene expression, AGPase and SSS enzyme activity, and total starch content after middle stage of starch accumulation, and had smaller average starch granule size during whole process of tuber development, and had higher pasting temperature before late stages of tuber growth, and had lower pasting temperature after middle stage of starch accumulation. Path analysis showed that, after middle stage of starch accumulation, effects on starch gelatinization of cultivars with high, medium and low starch content represented starch synthesis enzyme activity > starch accumulation > starch granule distribution > starch synthesis enzyme gene expression, starch synthesis enzyme gene expression > starch synthesis enzyme activity > starch accumulation > starch granule distribution, starch synthesis enzyme gene expression > starch granule distribution > starch synthesis enzyme activity > starch accumulation, respectively. In the study, phases existed in the starch biosynthesis of potato tuber, and the starch quality and its formation process were different among varieties with different starch content. The findings might contribute to starch application and potato industries.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jian Guo ◽  
Lingling Qu ◽  
Yifan Hu ◽  
Weiping Lu ◽  
Dalei Lu

Abstract Background Kernel development and starch formation are the primary determinants of maize yield and quality, which are considerably influenced by drought stress. To clarify the response of maize kernel to drought stress, we established well-watered (WW) and water-stressed (WS) conditions at 1–30 days after pollination (dap) on waxy maize (Zea mays L. sinensis Kulesh). Results Kernel development, starch accumulation, and activities of starch biosynthetic enzymes were significantly reduced by drought stress. The morphology of starch granules changed, whereas the grain filling rate was accelerated. A comparative proteomics approach was applied to analyze the proteome change in kernels under two treatments at 10 dap and 25 dap. Under the WS conditions, 487 and 465 differentially accumulated proteins (DAPs) were identified at 10 dap and 25 dap, respectively. Drought induced the downregulation of proteins involved in the oxidation–reduction process and oxidoreductase, peroxidase, catalase, glutamine synthetase, abscisic acid stress ripening 1, and lipoxygenase, which might be an important reason for the effect of drought stress on kernel development. Notably, several proteins involved in waxy maize endosperm and starch biosynthesis were upregulated at early-kernel stage under WS conditions, which might have accelerated endosperm development and starch synthesis. Additionally, 17 and 11 common DAPs were sustained in the upregulated and downregulated DAP groups, respectively, at 10 dap and 25 dap. Among these 28 proteins, four maize homologs (i.e., A0A1D6H543, B4FTP0, B6SLJ0, and A0A1D6H5J5) were considered as candidate proteins that affected kernel development and drought stress response by comparing with the rice genome. Conclusions The proteomic changes caused by drought were highly correlated with kernel development and starch accumulation, which were closely related to the final yield and quality of waxy maize. Our results provided a foundation for the enhanced understanding of kernel development and starch formation in response to drought stress in waxy maize.


2019 ◽  
Vol 20 (3) ◽  
pp. 483 ◽  
Author(s):  
Kangyong Zha ◽  
Haoxun Xie ◽  
Min Ge ◽  
Zimeng Wang ◽  
Yu Wang ◽  
...  

As major component in cereals grains, starch has been one of the most important carbohydrate consumed by a majority of world’s population. However, the molecular mechanism for regulation of biosynthesis of starch remains elusive. In the present study, ZmES22, encoding a MADS-type transcription factor, was modestly characterized from maize inbred line B73. ZmES22 exhibited high expression level in endosperm at 10 days after pollination (DAP) and peaked in endosperm at 20 DAP, indicating that ZmES22 was preferentially expressed in maize endosperm during active starch synthesis. Transient expression of ZmES22 in tobacco leaf revealed that ZmES22 protein located in nucleus. No transactivation activity could be detected for ZmES22 protein via yeast one-hybrid assay. Transformation of overexpressing plasmid 35S::ZmES22 into rice remarkedly reduced 1000-grain weight as well as the total starch content, while the soluble sugar was significantly higher in transgenic rice lines. Moreover, overexpressing ZmES22 reduced fractions of long branched starch. Scanning electron microscopy images of transverse sections of rice grains revealed that altered expression of ZmES22 also changed the morphology of starch granule from densely packed, polyhedral starch granules into loosely packed, spherical granules with larger spaces. Furthermore, RNA-seq results indicated that overexpressing ZmES22 could significantly influence mRNA expression levels of numerous key regulatory genes in starch synthesis pathway. Y1H assay illustrated that ZmES22 protein could bind to the promoter region of OsGIF1 and downregulate its mRNA expression during rice grain filling stages. These findings suggest that ZmES22 was a novel regulator during starch synthesis process in rice endosperm.


2014 ◽  
Vol 13 (11) ◽  
pp. 2399-2406 ◽  
Author(s):  
Bing YI ◽  
Yu-fei ZHOU ◽  
Ming-yue GAO ◽  
Zhuang ZHANG ◽  
Yi HAN ◽  
...  

2015 ◽  
Vol 42 (1) ◽  
pp. 31 ◽  
Author(s):  
Masaki Okamura ◽  
Tatsuro Hirose ◽  
Yoichi Hashida ◽  
Ryu Ohsugi ◽  
Naohiro Aoki

In rice (Oryza sativa L.), tiller angle – defined as the angle between the main culm and its side tillers – is one of the important factors involved in light use efficiency. To clarify the relationship between tiller angle, gravitropism and stem-starch accumulation, we investigated the shoot gravitropic response of a low stem-starch rice mutant which lacks a large subunit of ADP-glucose pyrophosphorylase (AGP), called OsAGPL1 and exhibits relatively spread tiller angle. The insensitive gravitropic response exhibited by the mutant led us to the conclusion that insensitivity of gravitropism caused by stem-starch reduction splayed the tiller angle. Furthermore, since another AGP gene called OsAGPL3 was expressed at considerable levels in graviresponding sites, we generated a double mutant lacking both OsAGPL1 and OsAGPL3. The double mutant exhibited still lower stem-starch content, less sensitive gravitropic response and greater tiller angle spread than the single mutants. This indicated that the expansion of the tiller angle caused by the reduction in starch level was intense according to the extent of the reduction. We found there were no significant differences between the double mutant and wild-type plants in terms of dry matter production. These results provided new insight into the importance of stem-starch accumulation and ideal plant architecture.


Sign in / Sign up

Export Citation Format

Share Document