scholarly journals Effect of Drought Stress During Flowering Stage on Starch Accumulation and Starch Synthesis Enzymes in Sorghum Grains

2014 ◽  
Vol 13 (11) ◽  
pp. 2399-2406 ◽  
Author(s):  
Bing YI ◽  
Yu-fei ZHOU ◽  
Ming-yue GAO ◽  
Zhuang ZHANG ◽  
Yi HAN ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jian Guo ◽  
Lingling Qu ◽  
Yifan Hu ◽  
Weiping Lu ◽  
Dalei Lu

Abstract Background Kernel development and starch formation are the primary determinants of maize yield and quality, which are considerably influenced by drought stress. To clarify the response of maize kernel to drought stress, we established well-watered (WW) and water-stressed (WS) conditions at 1–30 days after pollination (dap) on waxy maize (Zea mays L. sinensis Kulesh). Results Kernel development, starch accumulation, and activities of starch biosynthetic enzymes were significantly reduced by drought stress. The morphology of starch granules changed, whereas the grain filling rate was accelerated. A comparative proteomics approach was applied to analyze the proteome change in kernels under two treatments at 10 dap and 25 dap. Under the WS conditions, 487 and 465 differentially accumulated proteins (DAPs) were identified at 10 dap and 25 dap, respectively. Drought induced the downregulation of proteins involved in the oxidation–reduction process and oxidoreductase, peroxidase, catalase, glutamine synthetase, abscisic acid stress ripening 1, and lipoxygenase, which might be an important reason for the effect of drought stress on kernel development. Notably, several proteins involved in waxy maize endosperm and starch biosynthesis were upregulated at early-kernel stage under WS conditions, which might have accelerated endosperm development and starch synthesis. Additionally, 17 and 11 common DAPs were sustained in the upregulated and downregulated DAP groups, respectively, at 10 dap and 25 dap. Among these 28 proteins, four maize homologs (i.e., A0A1D6H543, B4FTP0, B6SLJ0, and A0A1D6H5J5) were considered as candidate proteins that affected kernel development and drought stress response by comparing with the rice genome. Conclusions The proteomic changes caused by drought were highly correlated with kernel development and starch accumulation, which were closely related to the final yield and quality of waxy maize. Our results provided a foundation for the enhanced understanding of kernel development and starch formation in response to drought stress in waxy maize.


2007 ◽  
Vol 6 (7) ◽  
pp. 808-815 ◽  
Author(s):  
Hai-yan ZHANG ◽  
Shu-ting DONG ◽  
Rong-qi GAO ◽  
Qing-quan SUN

2015 ◽  
Vol 35 (1) ◽  
pp. 222-231 ◽  
Author(s):  
Qin Zhou ◽  
Yuanyuan Wu ◽  
Zheng Chonglan ◽  
Xinghua Xing ◽  
Lixin Liu ◽  
...  

2013 ◽  
Vol 39 (10) ◽  
pp. 1856
Author(s):  
Jiang-Ping REN ◽  
Ya-Ying WANG ◽  
Xin-Guo WANG ◽  
Na WANG ◽  
Xin CHEN ◽  
...  

1994 ◽  
Vol 21 (6) ◽  
pp. 829 ◽  
Author(s):  
GW Singletary ◽  
R Banisadr ◽  
PL Keeling

Heat stress during maize seed development can interfere with endosperm starch biosynthesis and reduce seed size, an important component of yield. Our objectives were to evaluate the direct influence of temperature during grain filling on kernel growth, carbohydrate accumulation, and corresponding endosperm metabolism. Kernels of maize were grown in vitro at 25�C until 15 or 16 days after pollination and then subjected to various temperatures for the remainder of their development. Mature kernel dry weight declined 45% in a linear fashion between 22 and 36�C. The rate of starch accumulation reached a maximum at approximately 32�C, and when measured at frequent intervals, declined only slightly with further temperature increase to 35�C. Reduced seed size resulted from an abbreviated duration of starch-related metabolism, which did not appear to be limited by endogenous sugars. Instead, a survey of 12 enzymes of sugar and starch metabolism indicated that ADP glucose pyrophosphorylase and soluble starch synthase were unique in displaying developmental peaks of activity which were compressed both in amount and time, similar to the effect of temperature on starch accumulation. We conclude that decreased starch synthesis in heat-stressed maize kernels results from a premature decline in the activity of these enzymes.


2020 ◽  
Vol 117 (52) ◽  
pp. 33177-33185
Author(s):  
Camila Ribeiro ◽  
Tracie A. Hennen-Bierwagen ◽  
Alan M. Myers ◽  
Kenneth Cline ◽  
A. Mark Settles

Endosperm starch synthesis is a primary determinant of grain yield and is sensitive to high-temperature stress. The maize chloroplast-localized 6-phosphogluconate dehydrogenase (6PGDH), PGD3, is critical for endosperm starch accumulation. Maize also has two cytosolic isozymes, PGD1 and PGD2, that are not required for kernel development. We found that cytosolic PGD1 and PGD2 isozymes have heat-stable activity, while amyloplast-localized PGD3 activity is labile under heat stress conditions. We targeted heat-stable 6PGDH to endosperm amyloplasts by fusing the Waxy1 chloroplast targeting the peptide coding sequence to the Pgd1 and Pgd2 open reading frames (ORFs). These WPGD1 and WPGD2 fusion proteins import into isolated chloroplasts, demonstrating a functional targeting sequence. Transgenic maize plants expressing WPGD1 and WPGD2 with an endosperm-specific promoter increased 6PGDH activity with enhanced heat stability in vitro. WPGD1 and WPGD2 transgenes complement the pgd3-defective kernel phenotype, indicating the fusion proteins are targeted to the amyloplast. In the field, the WPGD1 and WPGD2 transgenes can mitigate grain yield losses in high–nighttime-temperature conditions by increasing kernel number. These results provide insight into the subcellular distribution of metabolic activities in the endosperm and suggest the amyloplast pentose phosphate pathway is a heat-sensitive step in maize kernel metabolism that contributes to yield loss during heat stress.


2019 ◽  
Vol 13 ◽  
pp. 03007 ◽  
Author(s):  
Rachele Falchi ◽  
Elisa Petrussa ◽  
Marco Zancani ◽  
Valentino Casolo ◽  
Paola Beraldo ◽  
...  

Grapevines store non-structural carbohydrates (NSC) during late summer to sustain plant development at the onset of the following spring’s growth. Starch is the main stored carbohydrate, found in the wood-ray parenchyma of roots and canes. Although the relationship between hydraulic and plant photosynthetic performance is well-recognized, little research has been done on the long-term effects of drought in grapevines adopting different strategies to cope with water stress (i.e. isohydric and anisohydric). We performed our study by exposing two different grape cultivars (Syrah and Cabernet Sauvignon) to a short but severe drought stress, at two stages of the growing season (July and September). No marked differences in the physiological and hydraulic responses of the two varieties were found, probably due to our experimental conditions. However, anatomical and biochemical characterization of overwintering canes pointed out several interesting outcomes. We found a significant and parallel increase of starch and medullar ray number in both cultivars exposed to early water stress. We hypothesize that stressed vines limited their carbon allocation to growth, while shifting it to starch accumulation, with a most evident effect in the period of intense photosynthetic activity. We also speculate that a different aptitude to osmotic adjustment may underlay variation in starch increase and the specific involvement of bark NSC in the two cultivars.


2019 ◽  
Vol 18 (8) ◽  
pp. 1859-1870 ◽  
Author(s):  
Gang-shun RAO ◽  
Umair Ashraf ◽  
Lei-lei KONG ◽  
Zhao-wen MO ◽  
Li-zhong XIAO ◽  
...  

2009 ◽  
Vol 2009 ◽  
pp. 1-23 ◽  
Author(s):  
Boryana S. Stamova ◽  
Debbie Laudencia-Chingcuanco ◽  
Diane M. Beckles

The expression of genes involved in starch synthesis in wheat was analyzed together with the accumulation profiles of soluble sugars, starch, protein, and starch granule distribution in developing caryopses obtained from the same biological materials used for profiling of gene expression using DNA microarrays. Multiple expression patterns were detected for the different starch biosynthetic gene isoforms, suggesting their relative importance through caryopsis development. Members of the ADP-glucose pyrophosphorylase, starch synthase, starch branching enzyme, and sucrose synthase gene families showed different expression profiles; expression of some members of these gene families coincided with a period of high accumulation of starch while others did not. A biphasic pattern was observed in the rates of starch and protein accumulation which paralleled changes in global gene expression. Metabolic and regulatory genes that show a pattern of expression similar to starch accumulation and granule size distribution were identified, suggesting their coinvolvement in these biological processes.


Sign in / Sign up

Export Citation Format

Share Document