scholarly journals Genome-wide association study uncovers major genetic loci associated with seed flooding tolerance in soybean

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ripa Akter Sharmin ◽  
Benjamin Karikari ◽  
Fangguo Chang ◽  
G.M. Al Amin ◽  
Mashiur Rahman Bhuiyan ◽  
...  

Abstract Background Seed flooding stress is one of the threatening environmental stressors that adversely limits soybean at the germination stage across the globe. The knowledge on the genetic basis underlying seed-flooding tolerance is limited. Therefore, we performed a genome-wide association study (GWAS) using 34,718 single nucleotide polymorphism (SNPs) in a panel of 243 worldwide soybean collections to identify genetic loci linked to soybean seed flooding tolerance at the germination stage. Results In the present study, GWAS was performed with two contrasting models, Mixed Linear Model (MLM) and Multi-Locus Random-SNP-Effect Mixed Linear Model (mrMLM) to identify significant SNPs associated with electrical conductivity (EC), germination rate (GR), shoot length (ShL), and root length (RL) traits at germination stage in soybean. With MLM, a total of 20, 40, 4, and 9 SNPs associated with EC, GR, ShL and RL, respectively, whereas in the same order mrMLM detected 27, 17, 13, and 18 SNPs. Among these SNPs, two major SNPs, Gm_08_11971416, and Gm_08_46239716 were found to be consistently connected with seed-flooding tolerance related traits, namely EC and GR across two environments. We also detected two SNPs, Gm_05_1000479 and Gm_01_53535790 linked to ShL and RL, respectively. Based on Gene Ontology enrichment analysis, gene functional annotations, and protein-protein interaction network analysis, we predicted eight candidate genes and three hub genes within the regions of the four SNPs with Cis-elements in promoter regions which may be involved in seed-flooding tolerance in soybeans and these warrant further screening and functional validation. Conclusions Our findings demonstrate that GWAS based on high-density SNP markers is an efficient approach to dissect the genetic basis of complex traits and identify candidate genes in soybean. The trait associated SNPs could be used for genetic improvement in soybean breeding programs. The candidate genes could help researchers better understand the molecular mechanisms underlying seed-flooding stress tolerance in soybean.

Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 957 ◽  
Author(s):  
Yu ◽  
Chang ◽  
Lv ◽  
Sharmin ◽  
Wang ◽  
...  

Seed-flooding stress is one of the major abiotic constraints severely affecting soybean yield and quality. Understanding the molecular mechanism and genetic basis underlying seed-flooding tolerance will be of greatly importance in soybean breeding. However, very limited information is available about the genetic basis of seed-flooding tolerance in soybean. The present study performed Genome-Wide Association Study (GWAS) to identify the quantitative trait nucleotides (QTNs) associated with three seed-flooding tolerance related traits, viz., germination rate (GR), normal seedling rate (NSR) and electric conductivity (EC), using a panel of 347 soybean lines and the genotypic data of 60,109 SNPs with MAF > 0.05. A total of 25 and 21 QTNs associated with all three traits were identified via mixed linear model (MLM) and multi-locus random-SNP-effect mixed linear model (mrMLM) in three different environments (JP14, HY15, and Combined). Among these QTNs, three major QTNs, viz., QTN13, qNSR-10 and qEC-7-2, were identified through both methods MLM and mrMLM. Interestingly, QTN13 located on Chr.13 has been consistently identified to be associated with all three studied traits in both methods and multiple environments. Within the 1.0 Mb physical interval surrounding the QTN13, nine candidate genes were screened for their involvement in seed-flooding tolerance based on gene annotation information and available literature. Based on the qRT-PCR and sequence analysis, only one gene designated as GmSFT (Glyma.13g248000) displayed significantly higher expression level in all tolerant genotypes compared to sensitive ones under flooding treatment, as well as revealed nonsynonymous mutation in tolerant genotypes, leading to amino acid change in the protein. Additionally, subcellular localization showed that GmSFT was localized in the nucleus and cell membrane. Hence, GmSFT was considered as the most likely candidate gene for seed-flooding tolerance in soybean. In conclusion, the findings of the present study not only increase our knowledge of the genetic control of seed-flooding tolerance in soybean, but will also be of great utility in marker-assisted selection and gene cloning to elucidate the mechanisms of seed-flooding tolerance.


2018 ◽  
Vol 19 (10) ◽  
pp. 3145 ◽  
Author(s):  
Jie Yu ◽  
Weiguo Zhao ◽  
Wei Tong ◽  
Qiang He ◽  
Min-Young Yoon ◽  
...  

Salt toxicity is the major factor limiting crop productivity in saline soils. In this paper, 295 accessions including a heuristic core set (137 accessions) and 158 bred varieties were re-sequenced and ~1.65 million SNPs/indels were used to perform a genome-wide association study (GWAS) of salt-tolerance-related phenotypes in rice during the germination stage. A total of 12 associated peaks distributed on seven chromosomes using a compressed mixed linear model were detected. Determined by linkage disequilibrium (LD) blocks analysis, we finally obtained a total of 79 candidate genes. By detecting the highly associated variations located inside the genic region that overlapped with the results of LD block analysis, we characterized 17 genes that may contribute to salt tolerance during the seed germination stage. At the same time, we conducted a haplotype analysis of the genes with functional variations together with phenotypic correlation and orthologous sequence analyses. Among these genes, OsMADS31, which is a MADS-box family transcription factor, had a down-regulated expression under the salt condition and it was predicted to be involved in the salt tolerance at the rice germination stage. Our study revealed some novel candidate genes and their substantial natural variations in the rice genome at the germination stage. The GWAS in rice at the germination stage would provide important resources for molecular breeding and functional analysis of the salt tolerance during rice germination.


2021 ◽  
pp. 1-11
Author(s):  
Kailu Cui ◽  
Feiyan Qi ◽  
Ziqi Sun ◽  
Jingjing Feng ◽  
Bingyan Huang ◽  
...  

Abstract Peanut shell plays key roles in protecting the seed from diseases and pest infestation but also in the processing of peanut and is an important byproduct of peanut production. Most studies on peanut shell have focused on the utilization of its chemical applications, but the genetic basis of shell-related traits is largely unknown. A panel of 320 peanut (Arachis hypogaea) accessions including var. hypogaea, var. vulgaris, var. fastigiata and var. hirsuta was used to study the genetic basis of two physical and five microstructure-related traits in peanut shell. Significant phenotypic differences were revealed among the accessions of var. hypogaea, var. hirsuta, var. vulgaris and var. fastigiata for mechanical strength, thickness, three sclerenchymatous layer projections and main cell shape of the sclerenchymatous layer. We identified 10 significant single nucleotide polymorphisms (SNPs) through genome-wide association study (P < 5.0 × 10−6) combining the shell-related traits and high-quality SNPs. In total, 192 genes were located in physical proximity to the significantly associated SNPs, and 11 candidate genes were predicted related to their potential contribution to the development and structure of the peanut shell. All SNPs were detected on the B genome demonstrating the biased contribution of the B genome for the phenotypical make-up of peanut. Exploring the newly identified candidate genes will provide insight into the molecular pathways that regulate peanut shell-related traits and provide valuable information for molecular marker-assisted breeding of an improved peanut shell.


2021 ◽  
Author(s):  
Daqiu Sun ◽  
Sibo Chen ◽  
Zhenhai Cui ◽  
Jingwei Lin ◽  
Meiling Liu ◽  
...  

Abstract Background:Brace roots are an important part of the maize root system. Among brace root traits, brace root angle (BRA) and brace root diameter (BRD) are important components that affect plant growth and development. However, there are no reports on the genetic basis of maize BRA and BRD. Results:Here, a genome-wide association study (GWAS) was conducted using 508 associated populations with extensive natural variation. The broad heritability of BRA and BRD reached 0.91 and 0.82, respectively. The analysis of different subgroups showed that there were significant differences in BRA traits in different subgroups, whereas there was no significant difference in BRD. Evaluation of phenotypic diversity in three different environments showed that BRA and BRD exhibit a wide range of natural variability. In the GWAS, the BRA and BRD were combined with 55,8629 single nucleotide polymorphisms, and four candidate genes were found for BRA within the threshold of P < 1.78×10-6 that were significantly related to BRD). These genes may (1) participate in maize brace root cell wall synthesis through cell transport (GRMZM2G479243); (2) involve hormone signaling pathways in the horizontal expansion of brace root cells (GRMZM2G101928 and GRMZM2G174736); or (3) involve the PLETHORA (PLT1/2) gene (GRMZM2G151934) to promote stem cells and transport expanded cells to affect the growth of root meristems.Conclusions:These results provide theoretical information for understanding the genetic basis of brace root development. Further research on candidate genes will help clarify the molecular pathways regulating BRA and BRD in maize.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Le Gao ◽  
Chengsheng Meng ◽  
Tengfei Yi ◽  
Ke Xu ◽  
Huiwen Cao ◽  
...  

Abstract Background Identifying the loci and dissecting the genetic architecture underlying wheat yield- and quality-related traits are essential for wheat breeding. A genome-wide association study was conducted using a high-density 90 K SNP array to analyze the yield- and quality-related traits of 543 bread wheat varieties. Results A total of 11,140 polymorphic SNPs were distributed on 21 chromosomes, including 270 significant SNPs associated with 25 yield- and quality-related traits. Additionally, 638 putative candidate genes were detected near the significant SNPs based on BLUP data, including three (TraesCS7A01G482000, TraesCS4B01G343700, and TraesCS6B01G295400) related to spikelet number per spike, diameter of the first internode, and grain volume. The three candidate genes were further analyzed using stage- and tissue- specific gene expression data derived from an RNA-seq analysis. These genes are promising candidates for enhancing yield- and quality-related traits in wheat. Conclusions The results of this study provide a new insight to understand the genetic basis of wheat yield and quality. Furthermore, the markers detected in this study may be applicable for marker-assisted selection in wheat breeding programs.


2020 ◽  
Author(s):  
Alkesh Hada ◽  
Tushar K. Dutta ◽  
Nisha Singh ◽  
Vandna Rai ◽  
Nagendra K. Singh ◽  
...  

Abstract Background: Rice root-knot nematode (RRKN), Meloidogyne graminicola is one of the major biotic constraints in rice-growing countries of Southeast Asia. Host plant resistance is an environmentally-friendly and cost-effective mean to mitigate RRKN damage to rice. Considering the limited availability of genetic resources in the Asian rice (Oryza sativa) cultivars, exploration of novel sources and genetic basis of RRKN resistance is necessary. Results: We screened 272 diverse wild rice accessions (O. nivara, O. rufipogon, O. sativa f. spontanea) to identify genotypes resistant to RRKN. We dissected the genetic basis of RRKN resistance using a genome-wide association study with SNPs (single nucleotide polymorphism) genotyped by 50K “OsSNPnks” genic Affymetrix chip. Population structure analysis revealed that these accessions were stratified into three major sub-populations. Overall, 40 resistant accessions (nematode gall number and multiplication factor/MF < 2) were identified, with 17 novel SNPs being significantly associated with phenotypic traits such as number of galls, egg masses, eggs/egg mass and MF per plant. SNPs were localized to the quantitative trait loci (QTL) on chromosome 1, 2, 3, 4, 6, 10 and 11 harboring the candidate genes including NBS-LRR, Cf2/Cf5 resistance protein, MYB, bZIP, ARF, SCARECROW and WRKY transcription factors. Expression of these identified genes was significantly (P < 0.01) upregulated in RRKN-infected plants compared to mock-inoculated plants at 7 days after inoculation. Conclusion: The identified SNPs enrich the repository of candidate genes for future marker-assisted breeding program to alleviate the damage of RRKN in rice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jia Liu ◽  
Lin Huang ◽  
Tingxuan Li ◽  
Yaxi Liu ◽  
Zehong Yan ◽  
...  

Wheat is one of the important staple crops as the resources of both food and micronutrient for most people of the world. However, the levels of micronutrients (especially Fe and Zn) in common wheat are inherently low. Biofortification is an effective way to increase the micronutrient concentration of wheat. Wild emmer wheat (Triticum turgidum ssp. dicoccoides, AABB, 2n = 4x = 28) is an important germplasm resource for wheat micronutrients improvement. In the present study, a genome-wide association study (GWAS) was performed to characterize grain iron, zinc, and manganese concentration (GFeC, GZnC, and GMnC) in 161 advanced lines derived from wild emmer. Using both the general linear model and mixed linear model, we identified 14 high-confidence significant marker-trait associations (MTAs) that were associated with GFeC, GZnC, and GMnC of which nine MTAs were novel. Six MTAs distributed on chromosomes 3B, 4A, 4B, 5A, and 7B were significantly associated with GFeC. Three MTAs on 1A and 2A were significantly associated with GZnC and five MTAs on 1B were significantly associated with GMnC. These MTAs show no negative effects on thousand kernel weight (TKW), implying the potential value for simultaneous improvement of micronutrient concentrations and TKW in breeding. Meanwhile, the GFeC, GZnC and GMnC are positively correlated, suggesting that these traits could be simultaneously improved. Genotypes containing high-confidence MTAs and 61 top genotypes with a higher concentration of grain micronutrients were recommended for wheat biofortification breeding. A total of 38 candidate genes related to micronutrient concentrations were identified. These candidates can be classified into four main groups: enzymes, transporter proteins, MYB transcription factor, and plant defense responses proteins. The MTAs and associated candidate genes provide essential information for wheat biofortification breeding through marker-assisted selection (MAS).


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shaoxing Bai ◽  
Jun Hong ◽  
Ling Li ◽  
Su Su ◽  
Zhikang Li ◽  
...  

AbstractPanicle architecture is one of the major factors influencing productivity of rice crops. The regulatory mechanisms underlying this complex trait are still unclear and genetic resources for rice breeders to improve panicle architecture are limited. Here, we have performed a genome-wide association study (GWAS) to analyze and identify genetic determinants underlying three panicle architecture traits. A population of 340 rice accessions from the 3000 Rice Genomes Project was phenotyped for panicle length, primary panicle number and secondary branch number over two years; GWAS was performed across the whole panel, and also across the japonica and indica sub-panels. A total of 153 quantitative trait loci (QTLs) were detected, of which 5 were associated with multiple traits, 8 were unique to either indica or japonica sub-panels, while 37 QTLs were stable across both years. Using haplotype and expression analysis, we reveal that genetic variations in the OsSPL18 promoter significantly affect gene expression and correlate with panicle length phenotypes. Three new candidate genes with putative roles in determining panicle length were also identified. Haplotype analysis of OsGRRP and LOC_Os03g03480 revealed high association with panicle length variation. Gene expression of DSM2, involved in abscisic acid biosynthesis, was up-regulated in long panicle accessions. Our results provide valuable information and resources for further unravelling the genetic basis determining rice panicle architecture. Identified candidate genes and molecular markers can be used in marker-assisted selection to improve rice panicle architecture through molecular breeding.


Sign in / Sign up

Export Citation Format

Share Document