scholarly journals Spatial, temporal and spatio-temporal clusters of measles incidence at the county level in Guangxi, China during 2004–2014: flexibly shaped scan statistics

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Xianyan Tang ◽  
Alan Geater ◽  
Edward McNeil ◽  
Qiuyun Deng ◽  
Aihu Dong ◽  
...  
2022 ◽  
Author(s):  
KALEAB TESFAYE TEGEGNE ◽  
ELENI TESFAYE TEGEGNE ◽  
MEKIBIB KASSA TESSEMA ◽  
GELETA ABERA ◽  
BERHANU BIFATO ◽  
...  

Abstract Background: As of the 31st of January 2021, there had been 102,399,513 confirmed cases of COVID-19 worldwide, with 2,217,005 deaths reported to WHOThe goal of this study is to uncover the spatiotemporal patterns of COVID 19 in Ethiopia, which will aid in the planning and implementation of essential preventative measures. Methods We obtained data on COVID 19 cases reported in Ethiopia from November 23 to December 29, 2021, from an Ethiopian health data website that is open to the public.Kulldorff's retrospective space-time scan statistics were utilized to detect the temporal, geographical, and spatiotemporal clusters of COVID 19 at the county level in Ethiopia, using the discrete Poisson probability model. Results: In Ethiopia, between November 23 and December 29, 2021, a total of 22,199 COVID 19 cases were reported.The COVID 19 cases in Ethiopia were strongly clustered in spatial, temporal, and spatiotemporal distribution, according to the results of Kulldorff's scan. statisticsThe most likely Spatio-temporal cluster (LLR = 70369.783209, RR = 412.48, P 0.001) was mostly concentrated in Addis Ababa and clustered between 2021/11/1 and 2021/11/30.Conclusion: From November 23 to December 29, 2021, this study found three large COVID 19 space-time clusters in Ethiopia, which could aid in future resource allocation in high-risk locations for COVID 19 management and prevention.


2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Elias Nyandwi ◽  
Tom Veldkamp ◽  
Frank Badu Osei ◽  
Sherif Amer

Schistosomiasis is recognised as a major public health problem in Rwanda. We aimed to identify the spatio-temporal dynamics of its distribution at a fine-scale spatial resolution and to explore the impact of control programme interventions. Incidence data of Schistosoma mansoni infection at 367 health facilities were obtained for the period 2001-2012. Disease cluster analyses were conducted using spatial scan statistics and geographic information systems. The impact of control interventions was assessed for three distinct sub-periods. Findings demonstrated persisting, emerging and re-emerging clusters of schistosomiasis infection across space and time. The control programme initially caused an abrupt increase in incidence rates during its implementation phase. However, this was followed by declining and disappearing clusters when the programme was fully in place. The findings presented should contribute to a better understanding of the dynamics of schistosomiasis distribution to be used when implementing future control activities, including prevention and elimination efforts.


Author(s):  
Lingxiao Wang ◽  
Tian Xu ◽  
Till Stoecker ◽  
Horst Stoecker ◽  
Yin Jiang ◽  
...  

Author(s):  
Wentao Yang ◽  
Min Deng ◽  
Chaokui Li ◽  
Jincai Huang

Understanding the spatio-temporal characteristics or patterns of the 2019 novel coronavirus (2019-nCoV) epidemic is critical in effectively preventing and controlling this epidemic. However, no research analyzed the spatial dependency and temporal dynamics of 2019-nCoV. Consequently, this research aims to detect the spatio-temporal patterns of the 2019-nCoV epidemic using spatio-temporal analysis methods at the county level in Hubei province. The Mann–Kendall and Pettitt methods were used to identify the temporal trends and abrupt changes in the time series of daily new confirmed cases, respectively. The local Moran’s I index was applied to uncover the spatial patterns of the incidence rate, including spatial clusters and outliers. On the basis of the data from January 26 to February 11, 2020, we found that there were 11 areas with different types of temporal patterns of daily new confirmed cases. The pattern characterized by an increasing trend and abrupt change is mainly attributed to the improvement in the ability to diagnose the disease. Spatial clusters with high incidence rates during the period were concentrated in Wuhan Metropolitan Area due to the high intensity of spatial interaction of the population. Therefore, enhancing the ability to diagnose the disease and controlling the movement of the population can be confirmed as effective measures to prevent and control the regional outbreak of the epidemic.


2020 ◽  
Author(s):  
Marj Tonini ◽  
Kim Romailler ◽  
Gaetano Pecoraro ◽  
Michele Calvello

<p><strong>Keywords:</strong> Landslides, FraneItalia, cluster analysis, spatio-temporal point process</p><p>In Italy landslides pose a significant and widespread risk, resulting in a large number of casualties and huge economic losses. Landslide inventories are critical to support investigations of where and when landslides have happened and may occur in the future, i.e. to establish reliable correlations between triggering factors and landslide occurrences. To deal with this issue, statistical methods originally developed for spatio-temporal stochastic point processes can be useful for identifying correlations between events in space and time and detecting a significant excess of cases within large landslide datasets.</p><p>In the present study, the authors propose an approach to analyze and visualize spatio-temporal clusters of landslides occurred in Italy in the period 2010-2017, considering the weather warning zones as territorial units. Besides, a regional analysis was conducted in Campania region considering the municipalities as territorial units. Data on landslide occurrences derived from the FraneItalia catalog, an inventory retrieved from online Italian news. The database contains 8931 landslides, grouped in 4231 single events and 938 areal events (records referring to multiple landslides triggered by the same cause in the same geographic area). Analyses were performed both annually, considering each year individually, and globally, considering the entire frame period. We applied the spatio-temporal scan statistics permutation model (STPSS, integrated in SaTScan<sup>TM</sup> software), which allowed detecting clusters’ location and estimating their statistical significance. STPSS is based on cylindrical moving windows which scan the area across the space and in time counting the number of observed and expected occurrences and computing the likelihood ratio. The statistical inference (p-value) is evaluated by Monte Carlo sampling and finally the most likely clusters in the real and randomly generated datasets are compared.</p><p>Although more detailed analyses are required for the determination of cause-effect relationships among landslides and other variables, some relations with the local topographic and meteorological conditions can already be argued. At national scale, spatio-temporal clusters of landslides are mainly recurrent in two zones: the area enclosing Liguria Region – Northern Tuscany at north-west and the area between Abruzzo and Molise regions at centre-east. During the year, landslide clusters are particularly abundant between October and March. as most of the events in the FraneItalia catalog are rainfall-induced, strongly influenced by seasonal rainfall patterns. Concerning the regional analysis, most of the clusters are located in the Lattari mountains, the Pizzo d’Alvano massif and the Picentini mountains, areas highly susceptible to landslide occurrence due to geomorphological factors.</p><p>In conclusion, the application of spatio-temporal cluster analysis at various scale allowed the identification of frame periods with greater landslide activity. The question of whether this increase in activity depends climate conditions or topographic factors is still open and request further investigations.</p><p>REFERENCES</p><p>Calvello, M., Pecoraro, G. FraneItalia: a catalog of recent Italian landslides. <em>Geoenvironmental Disasters</em>. 5: 13 (2018)</p><p>Tonini, M. & Cama, M. Spatio-temporal pattern distribution of landslides causing damage in Switzerland. <em>Landslides</em> 16 (2019)</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Arvind B. Bambhroliya ◽  
Keith D. Burau ◽  
Ken Sexton

Objective. The objectives of the study were to detect high-risk areas and to examine how racial and ethnic status affect the geographic distribution of female breast cancer mortality in Texas. Analyses were based on county-level data for the years from 2000 to 2008.Materials and Methods. Breast cancer mortality data were obtained from the Texas Cancer Registry, and the Spatial Scan Statistics method was used to run Purely Spatial Analyses using the Discrete Poisson, Bernoulli, and Multinomial models.Results and Conclusions. Highest rates of female breast cancer mortality in Texas have shifted over time from southeastern areas towards northern and eastern areas, and breast cancer mortality at the county level is distributed heterogeneously based on racial/ethnic status. Non-Hispanic blacks were at highest risk in the northeastern region and lowest risk in the southern region, while Hispanics were at highest risk in the southern region along the border with Mexico and lowest risk in the northeastern region.


2019 ◽  
Author(s):  
Laís Picinini Freitas ◽  
Oswaldo Gonçalves Cruz ◽  
Rachel Lowe ◽  
Marilia Sá Carvalho

AbstractBrazil is a dengue-endemic country where all four dengue virus serotypes circulate and cause seasonal epidemics. Recently, chikungunya and Zika viruses were also introduced. In Rio de Janeiro city, the three diseases co-circulated for the first time in 2015-2016, resulting in what is known as the ‘triple epidemic’. In this study, we identify space-time clusters of dengue, chikungunya, and Zika, to understand the dynamics and interaction between these simultaneously circulating arboviruses in a densely populated and heterogeneous city.We conducted a spatio-temporal analysis of weekly notified cases of the three diseases in Rio de Janeiro city (July 2015 – January 2017), georeferenced by 160 neighbourhoods, using Kulldorff’s scan statistic with discrete Poisson probability models.There were 26549, 13662, and 35905 notified cases of dengue, chikungunya, and Zika, respectively. The 17 dengue clusters and 15 Zika clusters were spread all over the city, while the 14 chikungunya clusters were more concentrated in the North and Downtown areas. Zika clusters persisted over a longer period of time. The multivariate scan statistic – used to analyse the three diseases simultaneously – detected 17 clusters, nine of which included all three diseases.This is the first study exploring space-time clustering of dengue, chikungunya, and Zika in an intraurban area. In general, the clusters did not coincide in time and space. This is probably the result of the competition between viruses for host resources, and of vector-control attitudes promoted by previous arbovirus outbreaks. The main affected area – the North region – is characterised by a combination of high population density and low human development index, highlighting the importance of targeting interventions in this area. Spatio-temporal scan statistics have the potential to direct interventions to high-risk locations in a timely manner and should be considered as part of the municipal surveillance routine as a tool to optimize prevention strategies.Author summaryDengue, an arboviral disease transmitted by Aedes mosquitoes, has been endemic in Brazil for decades, but vector-control strategies have not led to a significant reduction in the disease burden and were not sufficient to prevent chikungunya and Zika entry and establishment in the country. In Rio de Janeiro city, the first Zika and chikungunya epidemics were detected between 2015-2016, coinciding with a dengue epidemic. Understanding the behaviour of these diseases in a triple epidemic scenario is a necessary step for devising better interventions for prevention and outbreak response. We applied scan statistics analysis to detect spatio-temporal clustering for each disease separately and for all three simultaneously. In general, clusters were not detected in the same locations and time periods, possibly due to competition between viruses for host resources, and change in behaviour of the human population (e.g. intensified vector-control activities in response to increasing cases of a particular arbovirus). Neighbourhoods with high population density and social vulnerability should be considered as important targets for interventions. Particularly in the North region, where clusters of the three diseases exist and the first chikungunya cluster occurred. The use of space-time cluster detection can direct intensive interventions to high-risk locations in a timely manner.


2019 ◽  
Author(s):  
Jinou Chen ◽  
Yubing Qiu ◽  
Rui Yang ◽  
Ling Li ◽  
Jinglong Hou ◽  
...  

Abstract Background Tuberculosis (TB) makes a big challenge to public health, especially in high TB burden counties of China and Greater Mekong Subregion (GMS). The aim of this study was to identify the spatial-temporal dynamic process and high-risk region of notified pulmonary tuberculosis (PTB), sputum smear-positive tuberculosis (SSP-TB) and sputum smear-negative tuberculosis (SSN-TB) cases in Yunnan, the south-western of China between years of 2005 to 2018. meanwhile, to evaluate the similarity of prevalence pattern for TB among GMS.Methods Data for notified PTB were extracted from the China Information System for Disease Control and Prevention (CISDCP) correspond to population information in 129 counties of Yunnan between 2005 to 2018. Seasonally adjusted time series defined the trend cycle and seasonality of PTB prevalence. Kulldorff’s space-time scan statistics was applied to identify temporal, spatial and spatial-temporal PTB prevalence clusters at county-level of Yunnan. Pearson correlation coefficient and hierarchical clustering were applied to define the similarity of TB prevalence among borders with GMS.Result There were a total of 381 855 notified PTB cases in Yunnan, and the average prevalence was 59.1 per 100 000 population between 2005 to 2018. A declined long-term trend with seasonality of a peak in spring and a trough in winter for PTB was observed. Spatial-temporal scan statistics detected the significant clusters of PTB prevalence, the most likely cluster concentrated in the northeastern angle of Yunnan between 2011 to 2015 (RR=2.6, P<0.01), though the most recent cluster for PTB and spatial cluster for SSP-TB was in borders with GMS. There were six potential TB prevalence patterns among GMS.Conclusion This study detected aggregated time interval and regions for PTB, SSP-TB, and SSN-TB at county-level of Yunnan province. Similarity prevalence pattern was found in borders and GMS. The localized prevention strategy should focus on cross-boundary transmission and SSN-TB control.


2021 ◽  
Vol 16 (2) ◽  
Author(s):  
Soheil Hashtarkhani ◽  
Behzad Kiani ◽  
Alireza Mohammadi ◽  
Shahab MohammadEbrahimi ◽  
Mohammad Dehghan-Tezerjani ◽  
...  

Pre-hospital care is provided by emergency medical services (EMS) staff, the initial health care providers at the scene of disaster. This study aimed to describe the characteristics of EMS callers and space-time distribution of emergency requests in a large urban area. Descriptive thematic maps of EMS requests were created using an empirical Bayesian smoothing approach. Spatial, temporal and spatio-temporal clustering techniques were applied to EMS data based on Kulldorff scan statistics technique. Almost 225,000 calls were registered in the EMS dispatch centre during the study period. Approximately two-thirds of these calls were associated with an altered level of patient consciousness, and the median response time for rural and urban EMS dispatches was 12.2 and 10.1 minutes, respectively. Spatio-temporal clusters of EMS requests were mostly located in central parts of the city, particularly near the downtown area. However, high-response time clustered areas had a low overlap with these general, spatial clusters. This low convergence shows that some unknown factors, other than EMS requests, influence the high-response times. The findings of this study can help policymakers to better allocate EMS resources and implement tailored interventions to enhance EMS system in urban areas.


Sign in / Sign up

Export Citation Format

Share Document