scholarly journals Coexistence of neuronal intranuclear inclusion disease and amyotrophic lateral sclerosis: an autopsy case

BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Atsuhiko Sugiyama ◽  
Takahiro Takeda ◽  
Mizuho Koide ◽  
Hajime Yokota ◽  
Hiroki Mukai ◽  
...  

Abstract Background Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disease. Pathologically, it is characterized by eosinophilic hyaline intranuclear inclusions in the cells of the visceral organs as well as central, peripheral, and autonomic nervous system cells. Recently, a GGC repeat expansion in the NOTCH2NLC gene has been identified as the etiopathological agent of NIID. Interestingly, this GGC repeat expansion was also reported in some patients with a clinical diagnosis of amyotrophic lateral sclerosis (ALS). However, there are no autopsy-confirmed cases of concurrent NIID and ALS. Case presentation A 60-year-old Taiwanese woman reported a four-month history of progressive weakness beginning in the right foot that spread to all four extremities. She was diagnosed with ALS because she met the revised El Escorial diagnostic criteria for definite ALS with upper and lower motor neuron involvement in the cervical, thoracic, and lumbosacral regions. She died of respiratory failure at 22 months from ALS onset, at the age of 62 years. Brain magnetic resonance imaging (MRI) revealed lesions in the medial part of the cerebellar hemisphere, right beside the vermis (paravermal lesions). The subclinical neuropathy, indicated by a nerve conduction study (NCS), prompted a potential diagnosis of NIID. Antemortem skin biopsy and autopsy confirmed the coexistence of pathology consistent with both ALS and NIID. We observed neither eccentric distribution of p62-positive intranuclear inclusions in the areas with abundant large motor neurons nor cytopathological coexistence of ALS and NIID pathology in motor neurons. This finding suggested that ALS and NIID developed independently in this patient. Conclusions We describe a case of concurrent NIID and ALS discovered during an autopsy. Abnormal brain MRI findings, including paravermal lesions, could indicate the coexistence of NIID even in patients with ALS showing characteristic clinical phenotypes.

2018 ◽  
Vol 19 (10) ◽  
pp. 3137 ◽  
Author(s):  
Anna Konopka ◽  
Julie Atkin

Amyotrophic lateral sclerosis (ALS) is a fatal, rapidly progressing neurodegenerative disease affecting motor neurons, and frontotemporal dementia (FTD) is a behavioural disorder resulting in early-onset dementia. Hexanucleotide (G4C2) repeat expansions in the gene encoding chromosome 9 open reading frame 72 (C9orf72) are the major cause of familial forms of both ALS (~40%) and FTD (~20%) worldwide. The C9orf72 repeat expansion is known to form abnormal nuclei acid structures, such as hairpins, G-quadruplexes, and R-loops, which are increasingly associated with human diseases involving microsatellite repeats. These configurations form during normal cellular processes, but if they persist they also damage DNA, and hence are a serious threat to genome integrity. It is unclear how the repeat expansion in C9orf72 causes ALS, but recent evidence implicates DNA damage in neurodegeneration. This may arise from abnormal nucleic acid structures, the greatly expanded C9orf72 RNA, or by repeat-associated non-ATG (RAN) translation, which generates toxic dipeptide repeat proteins. In this review, we detail recent advances implicating DNA damage in C9orf72-ALS. Furthermore, we also discuss increasing evidence that targeting these aberrant C9orf72 confirmations may have therapeutic value for ALS, thus revealing new avenues for drug discovery for this disorder.


Neurology ◽  
2020 ◽  
Vol 95 (24) ◽  
pp. e3394-e3405 ◽  
Author(s):  
Yanchun Yuan ◽  
Zhen Liu ◽  
Xuan Hou ◽  
Wanzhen Li ◽  
Jie Ni ◽  
...  

ObjectiveTo determine whether the GGC repeats in the NOTCH2NLC gene contribute to amyotrophic lateral sclerosis (ALS).MethodsIn this study, 545 patients with ALS and 1,305 healthy controls from mainland China were recruited. Several pathogenic mutations in known ALS-causative genes (including C9ORF72 and ATXN2) and polynucleotide repeat expansions in NOP56 and AR genes were excluded. Repeat-primed PCR and GC-rich PCR were performed to determine the GGC repeat size in NOTCH2NLC. Systematic and targeted clinical evaluations and investigations, including skin biopsy and dynamic electrophysiologic studies, were conducted in the genetically affected patients.ResultsGGC repeat expansion was observed in 4 patients (numbers of repeats 44, 54, 96, and 143), accounting for ≈0.73% (4 of 545) of all patients with ALS. A comparison with 1,305 healthy controls revealed that GGC repeat expansion in NOTCH2NLC was associated with ALS (Fisher exact test, 4 of 545 vs 0 of 1,305, p = 0.007). Compared to patients with the neuronal intranuclear inclusion disease (NIID) muscle weakness–dominant subtype, patients with ALS phenotype carrying the abnormal repeat expansion tended to have a severe phenotype and rapid deterioration.ConclusionOur results suggest that ALS is a specific phenotype of NIID or that GGC expansion in NOTCH2NLC is a factor that modifies ALS. These findings may help clarify the pathogenic mechanism of ALS and may expand the known clinical spectrum of NIID.


2021 ◽  
Vol 15 ◽  
Author(s):  
Iris-Stefania Pasniceanu ◽  
Manpreet Singh Atwal ◽  
Cleide Dos Santos Souza ◽  
Laura Ferraiuolo ◽  
Matthew R. Livesey

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by degeneration of upper and lower motor neurons and neurons of the prefrontal cortex. The emergence of the C9ORF72 hexanucleotide repeat expansion mutation as the leading genetic cause of ALS and FTD has led to a progressive understanding of the multiple cellular pathways leading to neuronal degeneration. Disturbances in neuronal function represent a major subset of these mechanisms and because such functional perturbations precede degeneration, it is likely that impaired neuronal function in ALS/FTD plays an active role in pathogenesis. This is supported by the fact that ALS/FTD patients consistently present with neurophysiological impairments prior to any apparent degeneration. In this review we summarize how the discovery of the C9ORF72 repeat expansion mutation has contributed to the current understanding of neuronal dysfunction in ALS/FTD. Here, we discuss the impact of the repeat expansion on neuronal function in relation to intrinsic excitability, synaptic, network and ion channel properties, highlighting evidence of conserved and divergent pathophysiological impacts between cortical and motor neurons and the influence of non-neuronal cells. We further highlight the emerging association between these dysfunctional properties with molecular mechanisms of the C9ORF72 mutation that appear to include roles for both, haploinsufficiency of the C9ORF72 protein and aberrantly generated dipeptide repeat protein species. Finally, we suggest that relating key pathological observations in C9ORF72 repeat expansion ALS/FTD patients to the mechanistic impact of the C9ORF72 repeat expansion on neuronal function will lead to an improved understanding of how neurophysiological dysfunction impacts upon pathogenesis.


2019 ◽  
Author(s):  
Xiaoyun Liu ◽  
Xiaohui Liu ◽  
Yifeng Du ◽  
Chunxia Li ◽  
Cuicui liu ◽  
...  

Abstract Background Neuronal intranuclear inclusion disease (NIID) is a recently defined disease entity of progressive neurodegenerative disease with characterizations of eosinophilic hyaline intranuclear inclusions in neuronal and somatic cells. The sporadic adult-onset NIID cases were previous described as ‘dementia dominant group’. Here we present a NIID case manifested prominently with recurrent vomiting. Case presentation A 60-year-old women present with paroxysmal vomiting, hypertention and decreased level of consciousness for 3 years. She was diagnosed with NIID based on history, clinical features, brain magnetic resonance imaging(MRI), skin biopsy. Conclusion Autonomic symptoms may manifest as the initial and predominant presentation of NIID. This case presentation may extend the spectrum of NIID and may give new insights in exploring the pathogenic mechanisms of NIID.


BMC Neurology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaosa Chi ◽  
Man Li ◽  
Ting Huang ◽  
Kangyong Tong ◽  
Hongyi Xing ◽  
...  

Abstract Background Neuronal intranuclear inclusion disease (NIID) is a chronic progressive neurodegenerative disease that is characterized by the discovery of eosinophilic hyaline intranuclear inclusions in the central and peripheral nervous systems and visceral organs. In this paper, we report a case of an adult-onset neuronal intranuclear inclusion disease presenting with mental abnormality in China. Case presentation A 62-year-old woman presented with mental abnormality and forgetfulness for 3 months before she was admitted to our hospital. There were prodromal symptoms of fever before she had the mental disorder. Encephalitis was first suspected, and the patient underwent lumbar puncture and brain magnetic resonance imaging (MRI). A cerebrospinal fluid (CSF) examination indicated normal pressure, a normal white blood cell count, and slightly elevated protein and glucose levels. Coxsackie B virus, enterovirus, and cytomegalovirus tests showed normal results. Bacterial culture and Cryptococcus neoformans test results were negative. The contrast-enhanced MRI of the brain was normal. The brain diffusion-weighted imaging (DWI) showed a symmetrically distributed strip-shaped hyperintensity signal of the corticomedullary junction in the bilateral frontal, parietal, and temporal lobes. We considered the diagnosis of the NIID, and therefore, skin biopsy was performed. The electron microscopy revealed that intranuclear inclusions in the nucleus of fibrocytes existed and were composed of filaments. Conclusions NIID is a rare neurodegenerative disease with diverse clinical manifestations. In clinical work, when a patient presents with abnormal mental behavior and exhibits hyperintensity signals on DWI images of the corticomedullary junction, it is crucial to consider the diagnosis of NIID.


2019 ◽  
Author(s):  
Xiaoyun Liu ◽  
Xiaohui Liu ◽  
Yifeng Du ◽  
Chunxia Li ◽  
Cuicui liu ◽  
...  

Abstract Background Neuronal intranuclear inclusion disease (NIID) is a recently defined disease entity of progressive neurodegenerative disease with characterizations of eosinophilic hyaline intranuclear inclusions in neuronal and somatic cells. The sporadic adult-onset NIID cases were previous described as ‘dementia dominant group’. Here we present a NIID case manifested prominently with recurrent vomiting. Case presentation A 60-year-old women present with paroxysmal vomiting, hypertention and decreased level of consciousness for 3 years. She was diagnosed with NIID based on history, clinical features, brain magnetic resonance imaging(MRI), skin biopsy. Conclusion Autonomic symptoms may manifest as the initial and predominant presentation of NIID. This case presentation may extend the spectrum of NIID and may give new insights in exploring the pathogenic mechanisms of NIID.


Author(s):  
Marie Catherine Boll ◽  
Oscar René Marrufo Meléndez ◽  
Camilo Rios ◽  
Jesus Maciel Zenil ◽  
Yara de Alba

ABSTRACT:Background: Amyotrophic lateral sclerosis (ALS) is a devastating disease that targets motor neurons. Upper motor neurons degeneration is pathologically characterized by brain iron accumulation. Signal attenuation in the shape of a ribbon at the posterior border of the precentral gyrus can be observed on conventional magnetic resonance imaging (MRI) sequences including T2-weighted sequence. Methods: With the aim to know the qualities of this potential marker of ALS, we conducted a prospective study. Patients with definite ALS in the age range of 40–70 years and healthy controls underwent 3T brain MRI using a standardized sequence. A second MRI was performed 18 months later under the same conditions in the patients with ALS. Results: Most of the patients with ALS (91.66%) exhibited a “black ribbon” (BR) with an average area of 79.98 mm3. Signal attenuation discriminated ALS with a mean value of 63.97 arbitrary units (AU) on the left BR (95% CI: 60.67–67.27), a mean value of 59.15 AU (95% CI: 54.78–63.53) on the right BR, and a significant difference with control subjects presenting a mean value of 107.85 AU (p < 0.001). The optimal cut-off point for differentiating patients with ALS from controls (sensitivity, 0.92; specificity, 0.93) was 83 AU. Forced vital capacity and muscle strength in the contralateral upper extremity were significantly correlated with the ribbon intensity in ALS. Patients who underwent a second study exhibited significant changes in the BR related to the rapid evolution of the disease. Conclusions: This marker represents a valuable tool for the selection of candidates and their follow-up in clinical trials.


2020 ◽  
Vol 13 ◽  
Author(s):  
Mamtaj Alam ◽  
Rajeshwar Kumar Yadav ◽  
Elizabeth Minj ◽  
Aarti Tiwari ◽  
Sidharth Mehan

: Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease (MND) characterised by the death of upper and lower motor neurons (corticospinal tract) in the motor cortex, basal ganglia, brain stem, and spinal cord. The patient experiences the sign and symptoms between 55 to 75 years of age included impaired motor movement, difficulty in speaking and swallowing, grip loss, muscle atrophy, spasticity and sometimes associated with memory and cognitive impairments. Median survival is 3 to 5 years after diagnosis and 5 to 10% beyond 10 years of age. The limited intervention of pharmacologically active compounds that are used clinically is majorly associated with the narrow therapeutic index. Pre-clinically established experimental models where neurotoxin methyl mercury mimics the ALS like behavioural and neurochemical alterations in rodents associated with neuronal mitochondrial dysfunctions and downregulation of adenyl cyclase mediated cAMP/CREB is the main pathological hallmark for the progression of ALS in central as well in the peripheral nervous system. Despite the considerable investigation into neuroprotection, it still constrains treatment choices to strong care and organization of ALS complications. Therefore, current review specially targeted in the investigation of clinical and pre-clinical features available for ALS to understand the pathogenic mechanisms and to explore the pharmacological interventions associated with up-regulation of intracellular adenyl cyclase/cAMP/CREB and mitochondrial-ETC coenzyme-Q10 activation as a future drug target in the amelioration of ALS mediated motor neuronal dysfunctions.


2020 ◽  
Vol 17 (3) ◽  
pp. 275-285 ◽  
Author(s):  
Si Chen ◽  
Qiao Liao ◽  
Ke Lu ◽  
Jinxia Zhou ◽  
Cao Huang ◽  
...  

Background: Amyotrophic lateral sclerosis (ALS) is a neurological disorder clinically characterized by motor system dysfunction, with intraneuronal accumulation of the TAR DNAbinding protein 43 (TDP-43) being a pathological hallmark. Riluzole is a primarily prescribed medicine for ALS patients, while its therapeutical efficacy appears limited. TDP-43 transgenic mice are existing animal models for mechanistic/translational research into ALS. Methods: We developed a transgenic rat model of ALS expressing a mutant human TDP-43 transgene (TDP-43M337V) and evaluated the therapeutic effect of Riluzole on this model. Relative to control, rats with TDP-43M337V expression promoted by the neurofilament heavy subunit (NEF) gene or specifically in motor neurons promoted by the choline acetyltransferase (ChAT) gene showed progressive worsening of mobility and grip strength, along with loss of motor neurons, microglial activation, and intraneuronal accumulation of TDP-43 and ubiquitin aggregations in the spinal cord. Results: Compared to vehicle control, intragastric administration of Riluzole (30 mg/kg/d) did not mitigate the behavioral deficits nor alter the neuropathologies in the transgenics. Conclusion: These findings indicate that transgenic rats recapitulate the basic neurological and neuropathological characteristics of human ALS, while Riluzole treatment can not halt the development of the behavioral and histopathological phenotypes in this new transgenic rodent model of ALS.


2021 ◽  
pp. 1-15
Author(s):  
Vasily Vorobyov ◽  
Alexander Deev ◽  
Frank Sengpiel ◽  
Vladimir Nebogatikov ◽  
Aleksey A. Ustyugov

Background: Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons resulting in muscle atrophy. In contrast to the lower motor neurons, the role of upper (cortical) neurons in ALS is yet unclear. Maturation of locomotor networks is supported by dopaminergic (DA) projections from substantia nigra to the spinal cord and striatum. Objective: To examine the contribution of DA mediation in the striatum-cortex networks in ALS progression. Methods: We studied electroencephalogram (EEG) from striatal putamen (Pt) and primary motor cortex (M1) in ΔFUS(1–359)-transgenic (Tg) mice, a model of ALS. EEG from M1 and Pt were recorded in freely moving young (2-month-old) and older (5-month-old) Tg and non-transgenic (nTg) mice. EEG spectra were analyzed for 30 min before and for 60 min after systemic injection of a DA mimetic, apomorphine (APO), and saline. Results: In young Tg versus nTg mice, baseline EEG spectra in M1 were comparable, whereas in Pt, beta activity in Tg mice was enhanced. In older Tg versus nTg mice, beta dominated in EEG from both M1 and Pt, whereas theta and delta 2 activities were reduced. In younger Tg versus nTg mice, APO increased theta and decreased beta 2 predominantly in M1. In older mice, APO effects in these frequency bands were inversed and accompanied by enhanced delta 2 and attenuated alpha in Tg versus nTg mice. Conclusion: We suggest that revealed EEG modifications in ΔFUS(1–359)-transgenic mice are associated with early alterations in the striatum-cortex interrelations and DA transmission followed by adaptive intracerebral transformations.


Sign in / Sign up

Export Citation Format

Share Document