scholarly journals Systemic and intrathecal baclofen produce bladder antinociception in rats

BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Timothy J. Ness ◽  
Alan Randich ◽  
Xin Su ◽  
Cary DeWitte ◽  
Keith Hildebrand

Abstract Background Baclofen, a clinically available GABAB receptor agonist, produces non-opioid analgesia in multiple models of pain but has not been tested for effects on bladder nociception. Methods A series of experiments examined the effects of systemic and spinally administered baclofen on bladder nociception in female anesthetized rats. Models of bladder nociception included those which employed neonatal and adult bladder inflammation to produce bladder hypersensitivity. Results Cumulative intraperitoneal dosing (1–8 mg/kg IP) and cumulative intrathecal dosing (10–160 ng IT) of baclofen led to dose-dependent inhibition of visceromotor responses (VMRs) to urinary bladder distension (UBD) in all tested models. There were no differences in the magnitude of the analgesic effects of baclofen as a function of inflammation versus no inflammation treatments. Hemodynamic (pressor) responses to UBD were similarly inhibited by IT baclofen as well as UBD-evoked excitatory responses of spinal dorsal horn neurons. The GABAB receptor antagonist, CGP 35,348, antagonized the antinociceptive effects of IT baclofen on VMRs in all tested models but did not affect the magnitude of the VMRs by itself suggesting no tonic GABAB activity was present in this preparation. Tolerance to a seven day continuous IT infusion of baclofen was not observed. Conclusions These data provide support for a clinical trial of baclofen as a non-opioid treatment of human bladder pain.

2021 ◽  
Author(s):  
Timothy J. Ness ◽  
Alan Randich ◽  
Xin Su ◽  
Cary DeWitte ◽  
Keith Hildebrand

Abstract Background Baclofen, a clinically available GABAB receptor agonist, produces non-opioid analgesia in multiple models of pain but has not been tested for effects on bladder nociception. Methods A series of experiments examined the effects of systemic and spinally administered baclofen on bladder nociception in female anesthetized rats. Models of bladder nociception included those which employed neonatal and adult bladder inflammation to produce bladder hypersensitivity. Results Cumulative intraperitoneal dosing (1–8 mg/kg IP) and cumulative intrathecal dosing (10–160 ng IT) of baclofen led to dose-dependent inhibition of visceromotor responses (VMRs) to urinary bladder distension (UBD) in all tested models. There were no differences in the magnitude of the analgesic effects of baclofen as a function of inflammation versus no inflammation treatments. Hemodynamic (pressor) responses to UBD were similarly inhibited by IT baclofen as well as UBD-evoked excitatory responses of spinal dorsal horn neurons. The GABAB receptor antagonist, CGP 35348, antagonized the antinociceptive effects of IT baclofen on VMRs in all tested models but did not affect the magnitude of the VMRs by itself suggesting no tonic GABAB activity was present in this preparation. Tolerance to a seven day continuous IT infusion of baclofen was not observed. Conclusions These data provide support for a clinical trial of baclofen as a non-opioid treatment of human bladder pain.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2237 ◽  
Author(s):  
Chung Ping ◽  
Tengku Tengku Mohamad ◽  
Muhammad Akhtar ◽  
Enoch Perimal ◽  
Ahmad Akira ◽  
...  

Pain is one of the most common cause for hospital visits. It plays an important role in inflammation and serves as a warning sign to avoid further injury. Analgesics are used to manage pain and provide comfort to patients. However, prolonged usage of pain treatments like opioids and NSAIDs are accompanied with undesirable side effects. Therefore, research to identify novel compounds that produce analgesia with lesser side effects are necessary. The present study investigated the antinociceptive potentials of a natural compound, cardamonin, isolated from Boesenbergia rotunda (L) Mansf. using chemical and thermal models of nociception. Our findings showed that intraperitoneal and oral administration of cardamonin (0.3, 1, 3, and 10 mg/kg) produced significant and dose-dependent inhibition of pain in abdominal writhing responses induced by acetic acid. The present study also demonstrated that cardamonin produced significant analgesia in formalin-, capsaicin-, and glutamate-induced paw licking tests. In the thermal-induced nociception model, cardamonin exhibited significant increase in response latency time of animals subjected to hot-plate thermal stimuli. The rota-rod assessment confirmed that the antinociceptive activities elicited by cardamonin was not related to muscle relaxant or sedative effects of the compound. In conclusion, the present findings showed that cardamonin exerted significant peripheral and central antinociception through chemical- and thermal-induced nociception in mice through the involvement of TRPV1, glutamate, and opioid receptors.


2003 ◽  
Vol 99 (1) ◽  
pp. 205-211 ◽  
Author(s):  
Chuanyao Tong ◽  
Weiya Ma ◽  
Sang-Wook Shin ◽  
Robert L. James ◽  
James C. Eisenach

Background Uterine cervical distension underlies labor pain, yet its neurophysiology and pharmacology of inhibition remain unexplored. The authors examined uterine cervical distension-evoked cFos immunoreactivity in rat spinal cords, and the inhibitory effect of spinal cyclo-oxygenase inhibition on cFos expression. Methods Female rats were anesthetized with halothane, and pairs of metal rods were inserted in each cervical os through a mid-line laparotomy. A submaximal distension force (75 g) was applied for either 30 or 60 min, or, in control animals, no force was applied. Other animals received cervical lidocaine infiltration prior to uterine cervical distension. At the end of the experiments, the spinal cord at T12 to L2 levels was harvested and immunostained for cFos protein. Other animals received intrathecal ketorolac (0, 5, 25, and 50 microg; n = 5-6 for each group) prior to uterine cervical distension. Results Uterine cervical distension significantly increased cFos immunoreactivity in the spinal cord from T12 to L2, with most cFos expression in the deep dorsal and central canal regions. Surgical preparation alone without uterine cervical distension resulted in minimal cFos expression, primarily in the superficial dorsal horn. Uterine cervical distension-evoked cFos expression was prevented by prior infiltration of lidocaine into the cervix. Intrathecal ketorolac produced a dose-dependent inhibition of uterine cervical distension-induced cFos expression. Conclusion The present study demonstrates that uterine cervical distension results in a similar pattern of spinal cord neuronal activation as seen with other noxious visceral stimuli. The inhibition of cFos expression by intrathecal ketorolac suggests that spinal cyclo-oxygenase plays a role in uterine cervical distension-induced nociception.


Reproduction ◽  
2000 ◽  
pp. 15-23 ◽  
Author(s):  
K Jewgenow ◽  
M Rohleder ◽  
I Wegner

Despite many efforts, the control of reproduction in feral cat populations is still a problem in urban regions around the world. Immunocontraception is a promising approach; thus the present study examined the suitability of the widely used pig zona pellucida proteins (pZP) for contraception in feral domestic cats. Purified zona pellucida proteins obtained from pig and cat ovaries were used to produce highly specific antisera in rabbits. Antibodies against pZP raised in rabbits or lions were not effective inhibitors of either in vitro sperm binding (cat spermatozoa to cat oocytes) or in vitro fertilization in cats, whereas antibodies against feline zona pellucida proteins (fZP) raised in rabbits showed a dose-dependent inhibition of in vitro fertilization. Immunoelectrophoresis, ELISA and immunohistology of ovaries confirmed these results, showing crossreactivity of anti-fZP sera to fZP and to a lesser extent to pZP, but no interaction of anti-pZP sera with fZP. It is concluded that cat and pig zonae pellucidae express a very small number of shared antigenic determinants, making the use of pZP vaccine in cats questionable. A contraceptive vaccine based on feline zona pellucida determinants will be a better choice for the control of reproduction in feral cats if immunogenity can be achieved.


Author(s):  
Putthiporn Khongkaew ◽  
Phanphen Wattanaarsakit ◽  
Konstantinos I. Papadopoulos ◽  
Watcharaphong Chaemsawang

Background: Cancer is a noncommunicable disease with increasing incidence and mortality rates both worldwide and in Thailand. Its apparent lack of effective treatments is posing challenging public health issues. Introduction: Encouraging research results indicating probable anti-cancer properties of the Delonix regia flower extract (DRE) have prompted us to evaluate the feasibility of developing a type of product for future cancer prevention or treatment. Methods and Results: In the present report, using High Performance Liquid Chromatography (HPLC), we demonstrate in the DRE, the presence of high concentrations of three identifiable flavonoids, namely rutin 4.15±0.30 % w/w, isoquercitrin 3.04±0.02 %w/w, and myricetin 2.61±0.01 % w/w respectively while the IC50 of DPPH and ABTS assay antioxidation activity was 66.88±6.30 µg/ml and 53.65±7.24 µg/ml respectively. Discussion: Our cancer cell line studies using the MTT assay demonstrated DREs potent and dose dependent inhibition of murine leukemia cell line (P-388: 35.28±4.07% of cell viability remaining), as well as of human breast adenocarcinoma (MCF-7), human cervical carcinoma (HeLa), human oral cavity carcinoma (KB), and human colon carcinoma (HT-29) cell lines in that order of magnitude. Conclusion: Three identifiable flavonoids (rutin, isoquercitrin and myricetin) with high antioxidation activity and potent and dose dependent inhibition of murine leukemia cell line and five other cancer cell lines were documented in the DRE. The extract’s lack of cytotoxicity in 3 normal cell lines is a rare advantage not usually seen in current antineoplastic agents. Yet another challenge of the DRE was its low dissolution rate and long-term storage stability, issues to be resolved before a future product can be formulated.


Author(s):  
Virginia Fuochi ◽  
Massimo Caruso ◽  
Rosalia Emma ◽  
Aldo Stivala ◽  
Riccardo Polosa ◽  
...  

Background: The key ingredients of e-cigarettes liquid are commonly propane-1,2-diol (also called propylene glycol) and propane-1,2,3-triol (vegetal glycerol) and their antimicrobial effects are already established. The nicotine and flavors which are often present in e-liquids can interfere with the growth of some microorganisms. Objective: The effect of the combining these elements in e-liquids is unknown. The aim of the study was to investigate the possible effects of these liquids on bacterial growth in the presence or absence of nicotine and flavors. Methods: Susceptibilities of pathogenic strains (Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis and Sarcina lutea) were studied by means of a multidisciplinary approach. Cell viability and antioxidant assays were also evaluated. Results: All e-liquids investigated showed antibacterial activity against at least one pathogenic strain. A higher activity was correlated to the presence of flavors and nicotine. Discussion: In most cases the value of minimal bactericidal concentration is equal to the value of minimal inhibitory concentration showing that these substances have a bactericidal effect. This effect was observed in concentrations up to 6.25% v/v. Antioxidant activity was also correlated to presence of flavors. Over time, the viability assay in human epithelial lung A549 cells showed a dose-dependent inhibition of cell growth. Conclusion: Our results have shown that flavors considerably enhance the antibacterial activity of propane-1,2-diol and propane-1,2,3-triol. This study provides important evidence that should be taken into consideration in further investigative approaches, to clarify the different sensitivity of the various bacterial species to e-liquids, including the respiratory microbiota, to highlight the possible role of flavors and nicotine.


2015 ◽  
Vol 59 (5) ◽  
pp. 2867-2874 ◽  
Author(s):  
Atteneri López-Arencibia ◽  
Daniel García-Velázquez ◽  
Carmen M. Martín-Navarro ◽  
Ines Sifaoui ◽  
María Reyes-Batlle ◽  
...  

ABSTRACTThein vitroactivity of a novel group of compounds, hexaazatrinaphthylene derivatives, against two species ofLeishmaniais described in this study. These compounds showed a significant dose-dependent inhibition effect on the proliferation of the parasites, with 50% inhibitory concentrations (IC50s) ranging from 1.23 to 25.05 μM against the promastigote stage and 0.5 to 0.7 μM against intracellular amastigotes. Also, a cytotoxicity assay was carried out to in order to evaluate the possible toxic effects of these compounds. Moreover, different assays were performed to determine the type of cell death induced after incubation with these compounds. The obtained results highlight the potential use of hexaazatrinaphthylene derivatives againstLeishmaniaspecies, and further studies should be undertaken to establish them as novel leishmanicidal therapeutic agents.


1990 ◽  
Vol 17 (3) ◽  
pp. 177-181
Author(s):  
Peter S. Eriksson ◽  
Elisabeth Hansson ◽  
Lars Rönnbäck

The presence of μ-opioid receptors was demonstrated as effects of receptor stimulation on PGE1-induced cAMP accumulation in neuronal-enriched primary cultures from rat cerebral cortex. Morphine was used as a μ-receptor agonist. There was a dose-dependent inhibition of the PGE1-stimulated cAMP accumulation by morphine, blocked by the μ-receptor antagonist naloxone. These findings suggest that these neuronal cultures express μ-receptors, possibly connected to adenylate cyclase via an inhibitory Gi-protein. The probable use of functional μ-receptors in neurotoxicological tests is discussed.


Sign in / Sign up

Export Citation Format

Share Document