Antioxidant effects and in vitro cytotoxicity on human cancer cell lines of flavonoid-rich Flamboyant (Delonix regia (Bojer) Raf.) flower extract

Author(s):  
Putthiporn Khongkaew ◽  
Phanphen Wattanaarsakit ◽  
Konstantinos I. Papadopoulos ◽  
Watcharaphong Chaemsawang

Background: Cancer is a noncommunicable disease with increasing incidence and mortality rates both worldwide and in Thailand. Its apparent lack of effective treatments is posing challenging public health issues. Introduction: Encouraging research results indicating probable anti-cancer properties of the Delonix regia flower extract (DRE) have prompted us to evaluate the feasibility of developing a type of product for future cancer prevention or treatment. Methods and Results: In the present report, using High Performance Liquid Chromatography (HPLC), we demonstrate in the DRE, the presence of high concentrations of three identifiable flavonoids, namely rutin 4.15±0.30 % w/w, isoquercitrin 3.04±0.02 %w/w, and myricetin 2.61±0.01 % w/w respectively while the IC50 of DPPH and ABTS assay antioxidation activity was 66.88±6.30 µg/ml and 53.65±7.24 µg/ml respectively. Discussion: Our cancer cell line studies using the MTT assay demonstrated DREs potent and dose dependent inhibition of murine leukemia cell line (P-388: 35.28±4.07% of cell viability remaining), as well as of human breast adenocarcinoma (MCF-7), human cervical carcinoma (HeLa), human oral cavity carcinoma (KB), and human colon carcinoma (HT-29) cell lines in that order of magnitude. Conclusion: Three identifiable flavonoids (rutin, isoquercitrin and myricetin) with high antioxidation activity and potent and dose dependent inhibition of murine leukemia cell line and five other cancer cell lines were documented in the DRE. The extract’s lack of cytotoxicity in 3 normal cell lines is a rare advantage not usually seen in current antineoplastic agents. Yet another challenge of the DRE was its low dissolution rate and long-term storage stability, issues to be resolved before a future product can be formulated.

Blood ◽  
1991 ◽  
Vol 77 (4) ◽  
pp. 818-825 ◽  
Author(s):  
E Berman ◽  
M Adams ◽  
R Duigou-Osterndorf ◽  
L Godfrey ◽  
B Clarkson ◽  
...  

Abstract We examined the effect of tamoxifen (Tmx), verapamil, and daunorubicin (DNR) in two cell lines that displayed the multidrug-resistant (MDR) phenotype and used laser flow cytometry to quantitate intracellular DNR content. In the vinblastine-resistant human lymphoblastic lymphoma cell line CEM-VBL, simultaneous incubation of DNR with Tmx 10 mumol/L or Tmx 50 mumol/L increased intracellular DNR fluorescence in a dose-dependent manner and demonstrated an uptake pattern similar to that seen with DNR and verapamil. Similar results were obtained in the vincristine- resistant human myeloid leukemia cell line HL-60/RV+. Cellular retention of DNR was also measured in both cell lines and results suggested that continuous exposure of the cells to Tmx resulted in higher intracellular DNR content compared with cells resuspended in fresh medium. No effect of Tmx or verapamil was observed in the drug- sensitive parent cell lines CEM or HL-60. Clonogenic experiments were then performed to determine whether Tmx was itself inhibitory to cell growth or whether Tmx potentiated DNR cytotoxicity. Tmx 10 mumol/L did not significantly inhibit either CEM-VBL or HL-60/RV+ cells after a 3- hour exposure followed by culture in methylcellulose. Tmx 50 mumol/L was significantly more inhibitory in both cell lines. However, cells that had been incubated with DNR and Tmx 10 mumol/L demonstrated a marked increment in growth inhibition compared with cells that had been incubated with DNR alone or Tmx 10 mumol/L alone. Based on the data presented here, we suggest that clinical testing of Tmx and DNR be pursued in the setting where MDR may play a role.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4923-4923
Author(s):  
Uwe Platzbecker ◽  
Katja Sockel ◽  
Claudia Schönefeldt ◽  
Daniel Nowak ◽  
Susann Helas ◽  
...  

Abstract Introduction Eltrombopag (EP) is a small-molecule, nonpeptide thrombopoietin receptor (TPO-R) agonist which has been shown in-vitro to inhibit leukemia cell growth. The underlying mechanism is still under investigation. Methods We report a patient with NPM1 mutated/FLT3 negative refractory AML who achieved a complete remission during treatment with single agent EP within the PMA112509 trial. In this patient we conducted sequential molecular analyses out of the bone marrow to study the underlying molecular mechanisms. Therefore, samples prior to EP, at remission and relapse were subjected to genome-wide copy number analysis using Affymetrix SNP 6.0 array in search for acquired copy number alterations (CNA). To screen for alterations in commonly mutated genes in AML, samples were further subjected to a next generation deep sequencing assay (NGS) of mutational hotspots in the genes ASXL1, CBL, DNMT3A, ETV6, EZH2, IDH1/2, KRAS, NPM1, NRAS, RUNX1, SF3B1, SRSF2, TET2, TP53, U2AF1 and ZRSR2. Sequencing was performed on the 454 GS Junior platform (Roche applied science). Moreover we investigated the expression of TPO-R (CD110) by different assays in cell lines and primary AML samples. To study the TPO-R dependency of potential antineoplastic EP effects we studied the effects of lentiviral TPO-R knockdown and single agent EP on the vitality and cell cycling of TPO-expressing and non-expression leukemia cell lines. Results By using NGS we followed the NPM1+ mutation (NPM1 c.864incTCTG) load in this patient and found a concomitant decline (prior EP: 12.6%, at CR: 1.1%) but not disappearance of NPM1+ cells and a reemergence (15.2%) together with a clonal evolution and development of a NRAS c.37G>C mutation during disease progression (Figure 1) while a SNP-array demonstrated no additional CNA at disease progression. Real time PCR analysis demonstrated TPO-R expression at all time points analyzed which declined during complete remission(TPO-R/GAPDH: prior EP: 56.7%, at CR: 32.3%). These results prompted us to study TPO-R expression of blasts by flow cytometry in de novo AML samples (n=72) at diagnosis. In fact, TPO-R was expressed only in 33 of 72 AML patients but across all FAB and cytogenetic subgroups. The median MFI (mean fluorescence intensity) of CD110 was 2-fold higher on blasts than on CD110 positive lymphocytes. Interestingly, there were some differences with regards to the mutational status, since the NPM mutation was documented more frequently in CD110 negative than in CD110 positive AML cases (26% vs. 10%). These data were confirmed by Taqman-PCR in an independent cohort (n=57) with a nearly three fold lower expression of TPO-R on NPM1+/FLT3- compared to NPM1-/FLT3- (p=0.0163) cases. Next, we sought to clarify if TPO-R expressing AML cell lines are dependent on TPO-R expression. Knockdown of TPO-R by lentivirally transferred shRNA resulted in down-regulation and rapid cell death in the TPO-R expressing megakaryoblastic cell line (CMK). However, treatment with EP in-vitro at doses ranging from 1 to 10 µg/ml lead to a dose-dependent decrease in the cell division rate and vitality not only in CMK but also in cell-lines with weak or absent surface TPO-R expression (e.g. KG1a, a human acute myeloid leukemia cell line or OCI-AML3, a NPM1+ myeloid cell line). In parallel, a significant counterregulatory upregulation of TPO-R mRNA was observed which was dose-dependent (KG1a, p=0.0014). Conclusion These data demonstrate that TPO-R is heterogeneously expressed across all AML subtypes but absent in the majority of NPM1+/FLT3- cases. The clinical response seen in our patient with a refractory NPM1+ AML further provides evidence to the fact that single agent EP can exert potent anti-leukemic effects in-vivo. These effects seem to be mediated rather independently of TPO-R expression. Disclosures: Platzbecker: GlaxoSmithKline: Honoraria, Research Funding.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1738
Author(s):  
Sheng-Cao Hu ◽  
Jin Yang ◽  
Chao Chen ◽  
Jun-Rong Song ◽  
Wei-Dong Pan

Tetrandrine, a dibenzyltetrahydroisoquinoline alkaloid isolated from the root of the traditional Chinese medicinal plant Stephania tetrandra S. Moore, a member of the Menispermaceae, showed anti-cancer activity by inhibiting cell proliferation, preventing cell cycle progress and induction of cell death and autophagy. In this study, twelve tetrandrine-l-amino acid derivatives and twelve tetrandrine-14-l-amino acid-urea derivatives were designed and synthesized, using C14-aminotetrandrine as raw material. Then the preliminary in vitro anti-cancer activities of these derivatives against human breast cancer cell line MDA-MB-231, human leukemia cell lines HEL and K562 were evaluated. The in vitro cytotoxicity results showed that these derivatives exhibited potent inhibitory effects on cancer cell growth, and the primary structure-activity relationships were evaluated. Notably, compound 3f exhibited satisfactory anticancer activity against all three cancer cell lines, especially the HEL cell line, with the IC50 value of 0.23 µM. Further research showed that 3f could induce G1/S cycle arrest and apoptosis in a dose- and time- dependent manner on the leukemia cell line HEL. The results suggested that 3f may be used as a potential anti-cancer agent for human leukemia.


Blood ◽  
1991 ◽  
Vol 77 (4) ◽  
pp. 818-825
Author(s):  
E Berman ◽  
M Adams ◽  
R Duigou-Osterndorf ◽  
L Godfrey ◽  
B Clarkson ◽  
...  

We examined the effect of tamoxifen (Tmx), verapamil, and daunorubicin (DNR) in two cell lines that displayed the multidrug-resistant (MDR) phenotype and used laser flow cytometry to quantitate intracellular DNR content. In the vinblastine-resistant human lymphoblastic lymphoma cell line CEM-VBL, simultaneous incubation of DNR with Tmx 10 mumol/L or Tmx 50 mumol/L increased intracellular DNR fluorescence in a dose-dependent manner and demonstrated an uptake pattern similar to that seen with DNR and verapamil. Similar results were obtained in the vincristine- resistant human myeloid leukemia cell line HL-60/RV+. Cellular retention of DNR was also measured in both cell lines and results suggested that continuous exposure of the cells to Tmx resulted in higher intracellular DNR content compared with cells resuspended in fresh medium. No effect of Tmx or verapamil was observed in the drug- sensitive parent cell lines CEM or HL-60. Clonogenic experiments were then performed to determine whether Tmx was itself inhibitory to cell growth or whether Tmx potentiated DNR cytotoxicity. Tmx 10 mumol/L did not significantly inhibit either CEM-VBL or HL-60/RV+ cells after a 3- hour exposure followed by culture in methylcellulose. Tmx 50 mumol/L was significantly more inhibitory in both cell lines. However, cells that had been incubated with DNR and Tmx 10 mumol/L demonstrated a marked increment in growth inhibition compared with cells that had been incubated with DNR alone or Tmx 10 mumol/L alone. Based on the data presented here, we suggest that clinical testing of Tmx and DNR be pursued in the setting where MDR may play a role.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1291 ◽  
Author(s):  
Cheng-Neng Mi ◽  
Hao Wang ◽  
Hui-Qin Chen ◽  
Cai-Hong Cai ◽  
Shao-Peng Li ◽  
...  

A phytochemical investigation of the roots of Swietenia macrophylla led to the isolation of seven polyacetylenes, including five new compounds (15) and two known ones (67). Their structures were elucidated by extensive spectroscopic analysis and detailed comparison with reported data. All the isolates were tested for their cytotoxicity against the human hepatocellular carcinoma cell line BEL-7402, human myeloid leukemia cell line K562, and human gastric carcinoma cell line SGC-7901. Compounds 1 and 6 showed moderate cytotoxicity against the above three human cancer cell lines with IC50 values ranging from 14.3 to 45.4 μM. Compound 4 displayed cytotoxicity against the K562 and SGC-7901 cancer cell lines with IC50 values of 26.2 ± 0.4 and 21.9 ± 0.3 μM, respectively.


Author(s):  
Rahul Kumar Gupta ◽  
Renu Bharat Rathi

Background: In the last few decades, plants have been playing a vital role in treating cancer and infectious diseases. Natural products have been rediscovered as effective methods of drug production amid advances in combinatorial chemistry. Roots of Martynia annua are being used as a folklore remedy for the treatment of cancer and rheumatism successfully. Aims of the Study: In the present study, ethanolic, aqueous and hydro-ethanolic root extracts of Martynia annua were screened for in vitro cytotoxicity activity using different cell lines. Settings and Design: In the experiment, lung cancer cell lines (A549), leukemia cancer cell lines (K562), oral cancer cell lines (SCC-40), breast cancer cell lines (MCF-7) & cervix cancer cell lines (SiHa) were studied on the extracts. Materials and Methods: The method used was Sulforhodamine B (SRB) assay technique in which growth inhibition of 50% (GI50) was analyzed by comparing it with standard drug Adriamycin (ADR) (doxorubicin). Results: Aqueous & ethanolic extract of Martynia annua root had shown high anticancer activity with GI50 value 11.3µg/ml and 20.4µg/ml respectively on human leukemia cell line K-562 but for human breast cancer cell line MCF-7, human lung cancer cell line A-549, human squamous cell carcinoma SCC-40 and human cervical cancer cell line SiHa the extracts showed activity in more than 80µg/ml. Conclusion: The anticancer activity of aqueous extract of Martynia annua root was found superior than the ethanolic extract in Human Leukemia Cell Line K-562. The study indicates that the Martynia annua root extracts are most effective against the fast proliferative cells (Leukemic cells) and possibly a cell cycle arrest (needed to be proved as future perspective) is the mode of action of the extract. To study its effect on targeted cancers, specific in vivo scientific studies and clinical trials should be carried out by further researchers.


2017 ◽  
Vol 12 (2) ◽  
pp. 1934578X1701200 ◽  
Author(s):  
Thao Quyen Cao ◽  
Bo Mi Lee ◽  
Yeon Woo Jung ◽  
Van Thu Nguyen ◽  
Jeong Ah Kim ◽  
...  

Cancer is a major public health burden in both developed and developing countries. Plant-derived compounds have played an important role in the development of useful anti-cancer agents. The current study was designed to evaluate the cytotoxic activity of chemical compounds from the stem bark of Styrax obassia. Seven known compounds (1–7) were isolated and identified. Compound 2 exhibited cytotoxic activity against the breast cancer cell line MCF-7 with an IC50 of 27.9 μM, followed by the human cervical cancer cell line Hela with an IC50 of 23.3 μM, and the human promyelocytic leukemia cell line HL-60 with an IC50 of 47.8 μM. Compound 7 exhibited cytotoxicity against Hela cells with an IC50 of 16.8 μM, followed by MCF-7 cells with an IC50 of 53.5 μM. This is the first study to investigate the significant anti-tumor properties of isolated compounds from the stem bark of S. obassia.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 793-800 ◽  
Author(s):  
RM Lemoli ◽  
T Igarashi ◽  
M Knizewski ◽  
L Acaba ◽  
A Richter ◽  
...  

Abstract We evaluated the potential role of photoradiation therapy with a benzoporphyrin derivative, monoacid ring A (BPD-MA), and dihematoporphyrin ether (DHE), for the ex vivo purging of residual tumor cells from autologous bone marrow (BM) grafts. BPD-MA and DHE photosensitizing activity was tested against two human large-cell lymphoma cell lines and colony-forming unit-leukemia (CFU-L) derived from patients with acute myelogenous leukemia (AML). In mixing experiments, 4-log elimination of tumor cell lines was observed after 1 hour of incubation with 75 ng/mL of BPD-MA or 30 minutes of treatment with 12.5 micrograms/mL of DHE followed by white light exposure. By comparison, using the same concentration of BPD-MA, the mean recovery of normal BM progenitors was 4% +/- 0.8% (mean +/- SD) for granulocyte- macrophage colony-forming unit (CFU-GM) and 5% +/- 0.8% for burst- forming unit-erythroid (BFU-E). Similarly, DHE treatment resulted in the recovery of 5.2% +/- 2% and 9.8% +/- 3% of CFU-GM and BFU-E, respectively. Furthermore, equivalently cytotoxic concentrations of both DHE and BPD-MA and light were found not to kill normal pluripotent stem cells in BM, as demonstrated by their survival in two-step long- term marrow culture at levels equal to untreated controls. The T- lymphoblastic leukemia cell line CEM and its vinblastine (VBL)- resistant subline CEM/VBL, along with the acute promyelocyte leukemia cell line HL-60 and its vincristine (VCR)-resistant subline HL-60/VCR, were also tested. BPD-MA at 75 ng/mL was able to provide a greater than 4-log elimination of the drug-sensitive cell lines, but only a 34% and 55% decrease of the drug-resistant HL-60/VCR and CEM/VBL cell lines, respectively. On the contrary, 12.5 micrograms/mL of DHE reduced the clonogenic growth of all the cell lines by more than 4 logs. Further experiments demonstrated decreased uptake of both BPD-MA and DHE by the resistant cell lines. However, all the cell lines took up more DHE than BPD-MA under similar experimental conditions. Our results demonstrate the preferential cytotoxicity of BPD-MA and DHE toward neoplastic cell lines and CFU-L from AML patients. In addition, DHE was slightly more effective in purging tumor cells expressing the p-170 glycoprotein. These results suggest that photoradiation with DHE would be useful for in vitro purging of residual drug-resistant leukemia and lymphoma cells.


Sign in / Sign up

Export Citation Format

Share Document