scholarly journals Tooth mousse containing casein phosphopeptide-amorphous calcium phosphate prevents biofilm formation of Streptococcus mutans

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ronit Vogt Sionov ◽  
Danae Tsavdaridou ◽  
Muna Aqawi ◽  
Batya Zaks ◽  
Doron Steinberg ◽  
...  

Abstract Background Streptococcus mutans is a common cariogenic bacterium in the oral cavity involved in plaque formation. Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) has been introduced into tooth mousse to encourage remineralization of dental enamel. The aim of this research was to study the effect of tooth mousse containing CPP-ACP (GC Tooth Mousse®) or CPP-ACP with 0.2% fluoride (CPP-ACPF; GC Tooth Mousse Plus®; GCP) on S. mutans planktonic growth and biofilm formation. Methods S. mutans was cultivated in the presence of different dilutions of the tooth mousse containing CPP-ACP or CPP-ACPF, and the planktonic growth was determined by ATP viability assay and counting colony-forming units (CFUs). The resulting biofilms were examined by crystal violet staining, MTT metabolic assay, confocal laser scanning microscopy (CLSM), and scanning electron microscope (SEM). Results The CPP-ACP tooth mousse (GC) at a dilution of 5–50 mg/ml (0.5–5%) did not inhibit planktonic growth, and even increased the ATP content and the number of viable bacteria after a 24 h incubation. The same was observed for the CPP-ACPF tooth mousse (GCP), except for the higher concentrations (25 and 50 mg/ml) that led to a drop in the bacterial count. Importantly, both compounds significantly decreased S. mutans biofilm formation at dilutions as low as 1.5–3 mg/ml. 12.5 mg/ml GC and 6.25 mg/ml GCP inhibited biofilm formation by 90% after 4 h. After 24 h, the MBIC90 was 6.25 mg/ml for both. CLSM images confirmed the strong inhibitory effect GC and GCP had on biofilm formation when using 5 mg/ml tooth mousse. SEM images of those bacteria that managed to form biofilm in the presence of 5 mg/ml tooth mousse, showed alterations in the bacterial morphology, where the streptococci appear 25–30% shorter on the average than the control bacteria. Conclusion Our data show that the tooth mousse containing CPP-ACP reduces biofilm formation of the cariogenic bacterium S. mutans without killing the bacteria. The use of natural substances which inhibit biofilm development without killing the bacteria, has therapeutic benefits, especially in orthodontic pediatric patients.

2020 ◽  
Vol 10 (12) ◽  
pp. 4155
Author(s):  
Maria Contaldo ◽  
Dario Di Stasio ◽  
Fedora della Vella ◽  
Dorina Lauritano ◽  
Rosario Serpico ◽  
...  

Enamel defects (EDs) are qualitative and/or quantitative disturbances of the dental surface. To date, the responsiveness to remineralizing treatments has been studied ex vivo, on dental sections from extracted teeth. The present research aims to establish if in vivo reflectance confocal laser scanning microscopy is able to visualize the changes in the enamel architecture on living teeth, before, during and after remineralizing treatments by casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). As proof-of-concept study, 17 consecutive children affected by EDs were enrolled and 38 EDs were considered. A CPP-ACP mousse was applied twice a week for 6 weeks and clinical and microscopic images were collected before, during and after the treatment for evaluating the changes occurred. For in vivo microscopic imaging, a reflectance confocal laser scanning microscope (RCM) for in vivo use was adopted. In this study RCM was proven to be able to visualize in vivo and at microscopic resolution the changes occurred during the remineralizing processes without needing for dental extractions and histopathological procedures. This in vivo RCM capability could encourage its clinical application in monitoring responsiveness to enamel therapies.


2018 ◽  
Vol 53 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Kyungsun Kim ◽  
Jung-Sub An ◽  
Bum-Soon Lim ◽  
Sug-Joon Ahn

Bisphenol A glycidyl methacrylate (bis-GMA), which is released into the oral environment by dental composites through incomplete polymerization, hydrolysis, and mechanical degradation, can significantly influence oral ecology around resin-based materials. The purpose of this study was to investigate how bis-GMA changes the virulence properties of Streptococcus mutans, a major cariogenic bacterium in humans. The results show that bis-GMA not only inhibited the planktonic growth of cells in medium containing glucose, fructose, or mannose, but also reduced the viability of S. mutans. However, the presence of bis-GMA increased sugar transport and intracellular polysaccharide accumulation in S. mutans, thereby increasing the potential of cell persistence. In addition, bis-GMA could enhance S. mutans’s adhesion to hard surfaces and glucan synthesis, which could contribute to biofilm formation. Although free bis-GMA made cells vulnerable to acidic stress, it also provided increased resistance to hydrogen peroxide, which might confer an advantage in competition with other oral microorganisms during the early stage of biofilm development. Interestingly, the presence of bis-GMA did not change the ability of S. mutans to interact with saliva. The results suggest that leachable bis-GMA could contribute to biofilm-related secondary dental caries at the marginal interface between resin-based materials and teeth by altering the virulent properties of S. mutans, although bis-GMA reduced the planktonic growth and viability of S. mutans.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5974
Author(s):  
Markus Reise ◽  
Stefan Kranz ◽  
Markus Heyder ◽  
Klaus D. Jandt ◽  
Bernd W. Sigusch

The goal of this study was to evaluate the effectiveness of the toothpaste Tooth Mousse compared to conventional fluoride-based versions in the prevention of enamel and dentin demineralization. Human enamel and dentin samples (n = 120 each) were exposed to artificial demineralization at pH 4.92. During the demineralization process, the samples in the test groups were periodically treated with Tooth Mousse (TM) containing casein-phosphopeptide -amorphous-calcium-phosphate (CPP-ACP) and Tooth Mousse Plus (TMP) containing amorphous-calcium-fluoride-phosphate (CPP-ACPF) to evaluate their protective properties. Fluoride toothpastes containing 1400 ppm amine fluoride (AmF) and 1450 ppm sodium fluoride (NaF) were applied in the positive control groups. Treatment with distilled water (group C-W) or demineralization without treatment (group C-D) served as negative controls. After the demineralization and treatment process, all samples were cut longitudinally and lesion depths were determined at six locations using polarized light microscopy. In TM/TMP groups (enamel: 80/86 µm, dentin: 153/156 µm) lesion depths were significantly smaller compared to the negative control groups C-W/C-D (enamel: 99/111 µm, dentin: 163/166 µm). However, TM and TMP compared to the positive controls AmF/NaF (enamel: 58/63 µm, dentin: 87/109 µm) showed higher lesion depths. The application of TM/TMP (89%/78%) during demineralization led to a reduced number of severe lesions compared to the negative controls C-W/C-D (100%/95%). In this study we demonstrate that Tooth Mousse is less effective regarding prevention of enamel and dentin demineralization compared to fluoride containing toothpastes.


Sign in / Sign up

Export Citation Format

Share Document