scholarly journals Saikosaponins induced hepatotoxicity in mice via lipid metabolism dysregulation and oxidative stress: a proteomic study

Author(s):  
Xiaoyu Li ◽  
Xiaojiaoyang Li ◽  
Junxian Lu ◽  
Youyi Huang ◽  
Lili Lv ◽  
...  
2021 ◽  
Vol 12 (5) ◽  
pp. 2323-2334
Author(s):  
Shihong Zheng ◽  
Peichang Cao ◽  
Zequn Yin ◽  
Xuerui Wang ◽  
Yuanli Chen ◽  
...  

Apigenin prevented the DDC-induced abnormal lipid metabolism, liver damage and liver fibrosis by reducing inflammation and oxidative stress. Apigenin might be a potential drug for the treatment of cholestatic liver diseases.


2021 ◽  
Vol 22 (16) ◽  
pp. 8847
Author(s):  
Fangfang Tie ◽  
Jin Ding ◽  
Na Hu ◽  
Qi Dong ◽  
Zhi Chen ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases which lacks ideal treatment options. Kaempferol and kaempferide, two natural flavonol compounds isolated from Hippophae rhamnoides L., were reported to exhibit a strong regulatory effect on lipid metabolism, for which the mechanism is largely unknown. In the present study, we investigated the effects of kaempferol and kaempferide on oleic acid (OA)-treated HepG2 cells, a widely used in vitro model of NAFLD. The results indicated an increased accumulation of lipid droplets and triacylglycerol (TG) by OA, which was attenuated by kaempferol and kaempferide (5, 10 and 20 μM). Western blot analysis demonstrated that kaempferol and kaempferide reduced expression of lipogenesis-related proteins, including sterol regulatory element-binding protein 1 (SREBP1), fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD-1). Expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT enhancer binding proteins β (C/EBPβ), two adipogenic transcription factors, was also decreased by kaempferol and kaempferide treatment. In addition, western blot analysis also demonstrated that kaempferol and kaempferide reduced expression of heme oxygenase-1 (HO-1) and nuclear transcription factor-erythroid 2-related factor 2 (Nrf2). Molecular docking was performed to identify the direct molecular targets of kaempferol and kaempferide, and their binding to SCD-1, a critical regulator in lipid metabolism, was revealed. Taken together, our findings demonstrate that kaempferol and kaempferide could attenuate OA-induced lipid accumulation and oxidative stress in HepG2 cells, which might benefit the treatment of NAFLD.


2020 ◽  
Vol 178 (2) ◽  
pp. 311-324
Author(s):  
Marisa Pfohl ◽  
Lishann Ingram ◽  
Emily Marques ◽  
Adam Auclair ◽  
Benjamin Barlock ◽  
...  

Abstract Perfluoroalkyl substances (PFAS) represent a family of environmental toxicants that have infiltrated the living world. This study explores diet-PFAS interactions and the impact of perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic (PFHxS) on the hepatic proteome and blood lipidomic profiles. Male C57BL/6J mice were fed with either a low-fat diet (10.5% kcal from fat) or a high fat (58% kcal from fat) high carbohydrate (42 g/l) diet with or without PFOS or PFHxS in feed (0.0003% wt/wt) for 29 weeks. Lipidomic, proteomic, and gene expression profiles were determined to explore lipid outcomes and hepatic mechanistic pathways. With administration of a high-fat high-carbohydrate diet, PFOS and PFHxS increased hepatic expression of targets involved in lipid metabolism and oxidative stress. In the blood, PFOS and PFHxS altered serum phosphatidylcholines, phosphatidylethanolamines, plasmogens, sphingomyelins, and triglycerides. Furthermore, oxidized lipid species were enriched in the blood lipidome of PFOS and PFHxS treated mice. These data support the hypothesis that PFOS and PFHxS increase the risk of metabolic and inflammatory disease induced by diet, possibly by inducing dysregulated lipid metabolism and oxidative stress.


2017 ◽  
Vol 29 (1) ◽  
pp. 108
Author(s):  
D. Laskowski ◽  
P. Humblot ◽  
M. A. Sirard ◽  
Y. Sjunnesson ◽  
G. Andersson ◽  
...  

Obesity and overfeeding are common causes for female infertility, leading to insulin resistance and hyperinsulinemia and associated with an increased risk for type 2 diabetes mellitus (Pasquali et al., http://dx.doi.org/10.1093/humupd/dmg024). We investigated here the effect of insulin during in vitro oocyte maturation on methylation changes in bovine Day 8 blastocysts (BC8) and focused on methylation patterns of candidate genes associated with metabolism and steroidogenesis (Day 0 = day of oocyte collection). Abattoir-derived oocytes (n = 882) were in vitro matured for 22 h with 2 different insulin concentrations, INS10 (10 µg mL−1) and INS0.1 (0.1 µg mL−1) or without insulin (INS0, control). Subsequently, IVF and IVC were performed to equal standardized conditions for all groups. Parallel genomic DNA and total RNA extraction (AllPrepDNA/RNA micro kit, cat no. 80284, Qiagen®, Valencia, CA, USA) from pools of 10 frozen (−80°C) BC8 was followed by transcriptome and epigenome analysis (Laskowski et al., http://dx.doi.org/10.1071/RD15315). An empirical Bayes moderated t-test and the ‘limma’ package in R (www.r-project.org) were used to search for differentially expressed genes between the control and the insulin groups. Analysis of the epigenome by using a specific pipeline, described by Shojaei Saadi et al. (2014 BMC Genomics 15, 451), showed that 7632 and 3914 regions were hypomethylated in the INS0.1 and INS10 v. INS0, whereas 6026 and 8504 regions were hypermethylated in INS0.1 and INS10 v. INS0. Combining epigenetic and transcriptomic data, we found that high methylation and low expression or the reverse (low methylation and high expression) were observed for a set of 14 and 11 genes for INS0.1 and INS10 respectively. Most of these genes are associated with lipid metabolism, steroid synthesis, and oxidative stress. Further investigation of the localization of differentially methylated regions (DMR) in genes showed that the conservation odds (methylation) was in general higher in coding regions and CpG islands than in noncoding regions. We observed a large overlap of DMR in the 2 insulin groups compared with controls (3233 common DMR). These numerous changes illustrate the potential unfavourable effects of elevated insulin during maturation leading to alteration of the methylation patterns of the early embryo. This model may help us better understand the mechanisms by which metabolic disorders observed pre-conception can affect embryonic development and subsequent health of the offspring. Our results based on changes in transcriptome or epigenome did show that insulin challenge during maturation leads to postponed effects associated with steroidogenesis, lipid metabolism and oxidative stress in the BC8. By this early stage, if persistent, specific changes in the expression and methylation patterns of genes associated to hyperinsulinemia may decrease the developmental potential of early embryos or could be responsible for subsequent pathologies. This study was funded by FORMAS.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Zoe Irwin ◽  
Emeir M. McSorley ◽  
Mary M. Slevin ◽  
Lisa Rowan ◽  
Paul McMillen ◽  
...  

AbstractEvidence from observational studies indicates that seaweed consumption may reduce the risk of non-communicable diseases such as cardiovascular disease, type two diabetes, and obesity. Accumulating evidence from in vitro and animal studies suggest seaweed have antihyperlipidemic, anti-inflammatory and antioxidant properties which may in part be attributed to the high content of soluble dietary fibre in seaweeds. The viscosity of seaweed fibres is suggested to mediate antihyperlipdiemic effects via the alteration of lipid/bile acid absorption kinetics to decrease low-density lipoprotein cholesterol (LDL). Thus, there is a need to evaluate the efficacy of seaweed derived dietary fibre in the management of dyslipidemia. Therefore, the aim of this study was to determine the effect of a fibre rich extract from Palmaria palmata on the lipid profile as well as markers of inflammation and oxidative stress in healthy adults. A total of 60 healthy participants (30 male and 30 female) aged 20 to 58 years, were assigned to consume the Palmaria palmata fibre extract (5g/day), Synergy-1 and the placebo (maltodextrin) for a duration of 4 weeks with a minimum 4 week washout between each treatment in a double blind, randomised crossover study conducted over 5 months. Fasting concentrations of cholesterol, triglycerides and high-density lipoprotein cholesterol (HDL) were analysed and low-density lipoprotein cholesterol (LDL) and LDL: HDL ratio was calculated. C-reactive protein (CRP) and Ferric Reducing Ability of Plasma (FRAP) were analysed as markers of inflammation and oxidative stress, respectively. Supplementation for 4 weeks with Palmaria palmata resulted in favourable changes to lipid profiles with a reduced LDL:HDL ratio; however intention-to-treat univariate ANCOVA identified no significant difference between the treatment groups over time on any of the lipid profile markers. A non-significant increase in CRP and triglyceride concentration along with lower FRAP was also observed with Palmaria palmata supplementation. Evidence from this study suggests that Palmaria palmata may have effects on lipid metabolism and appears to mobilise triglycerides. More research is needed in individuals with dyslipidaemia to fully elucidate these effects.


2021 ◽  
Vol 21 (2) ◽  
pp. 1331-1337
Author(s):  
Zhe Han ◽  
Yang Wang ◽  
Jing Li

Dyslipidemia and oxidative stress injury of blood vessel walls play important roles in the formation of atherosclerosis (AS) and plaque progression. This is also the main pathological basis for atherosclerosis. Statins, as inhibitors of HMG-CoA reductase in the process of cholesterol biosynthesis, have become key drugs for lipid-lowering treatment. Many studies have found the anti-atherosclerotic effect of atorvastatin is far beyond the lipid-lowering effect. Its lipid-lowering effects are also involved, such as anti-inflammatory, inhibiting endothelial cell ROS production, and improving endothelial cell damage. Nano selenium (Nano-Se) shows stronger anti-oxidation ability, lower toxicity, high efficiency absorption and strong immune regulation ability. Because of the unique biological effects of Nano-Se, it has broad prospects in the field of human health care. Therefore, in this study, by constructing a rat model of abnormal lipid metabolism, we observed changes in parameters such as serum peroxidase (MPO), propylene glycol (MDA), superoxide dismutase (SOD), and blood lipid levels in atherosclerotic rats Happening, furthermore, the effects of atorvastatin+nano-selenium on lipid metabolism disorders and the protective effects and mechanisms of oxidative stress injury in rats were investigated and with a view to providing new targets for the treatment of arteriosclerosis. The results of this study demonstrated that contrast to the AS rat, the combined use of atorvastatin+nano-selenium group could significantly reduce serum TC, TG, and LDL-C contents, and declined tissue lesions such as aortic arch and liver; Significantly enhanced the activities of GPx-1 and SOD in serum, decreased MDA content, and increased the SOD activity in rat aorta. These results suggested that the combined use of atorvastatin+nano-selenium has good protection against oxidative stress caused by disorders of lipid metabolism.


Sign in / Sign up

Export Citation Format

Share Document