Abnormal lipid metabolism and oxidative stress in hemodialysis patients

2001 ◽  
Vol 4 (1) ◽  
pp. 19-22 ◽  
Author(s):  
Masatoshi Mune ◽  
Haruhisa Otani
2021 ◽  
Vol 12 (5) ◽  
pp. 2323-2334
Author(s):  
Shihong Zheng ◽  
Peichang Cao ◽  
Zequn Yin ◽  
Xuerui Wang ◽  
Yuanli Chen ◽  
...  

Apigenin prevented the DDC-induced abnormal lipid metabolism, liver damage and liver fibrosis by reducing inflammation and oxidative stress. Apigenin might be a potential drug for the treatment of cholestatic liver diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bin Cheng ◽  
Ai-Zhen Zhou ◽  
Wen Ge ◽  
Xiao-Min Yao ◽  
Juan Wang

Huo-Xue-Qu-Yu formula (HXQYF) is a prescription consisting of Ginkgo biloba leaf and Paeonia lactiflora Pall. for treating hyperlipidemia and NAFLD in China. Here, we investigated the hepatic and renal function, oxidative stress and lipid metabolism, and potential mechanisms of HXQYF on nonalcoholic fatty liver disease (NAFLD) rat models. NAFLD rat models were induced with high-fat diet (HFD) and 10% fructose water for 18 weeks and orally administered with or without HXQYF simultaneously. The results showed that HXQYF (22.5, 45, 90 mg/kg) significantly improved blood lipid levels via reducing serum TC, TG, LDL-C, and APOB values and elevating HDL-C and APOA1 levels in NAFLD rats. The higher levels of ALT, AST, CR, and BUN in serum induced by HFD were reduced by HXQYF. HE staining showed that HXQYF (90 mg/kg) reduced the accumulation of fat droplets and alleviated inflammatory response in liver cells. Three doses of HXQYF exhibited notable antioxidant effects by elevating SOD, GSH, and CAT activities and decreasing MDA and OH-1 levels in the liver. Furthermore, abnormal lipid metabolism caused by HFD was alleviated by HXQYF, which was associated with the upregulation of PPAR-α, AdipoR2, and CPT1 mRNAs as well as the downregulation of CYP2E1 and SREBP-1c mRNAs in liver tissue. In conclusion, our work verified that HXQYF could reduce the degree of hepatic steatosis, suppress oxidative stress, and attenuate lipid metabolism, thus preventing NAFLD.


2018 ◽  
Vol 9 (12) ◽  
pp. 6508-6516 ◽  
Author(s):  
Marta Esgalhado ◽  
Julie A. Kemp ◽  
Renata Azevedo ◽  
Bruna R. Paiva ◽  
Milena B. Stockler-Pinto ◽  
...  

Prebiotic-resistant starch supplementation may be a good strategy to reduce inflammation, oxidative stress and uremic toxins in CKD patients.


Author(s):  
Xiaoyu Li ◽  
Xiaojiaoyang Li ◽  
Junxian Lu ◽  
Youyi Huang ◽  
Lili Lv ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 8847
Author(s):  
Fangfang Tie ◽  
Jin Ding ◽  
Na Hu ◽  
Qi Dong ◽  
Zhi Chen ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases which lacks ideal treatment options. Kaempferol and kaempferide, two natural flavonol compounds isolated from Hippophae rhamnoides L., were reported to exhibit a strong regulatory effect on lipid metabolism, for which the mechanism is largely unknown. In the present study, we investigated the effects of kaempferol and kaempferide on oleic acid (OA)-treated HepG2 cells, a widely used in vitro model of NAFLD. The results indicated an increased accumulation of lipid droplets and triacylglycerol (TG) by OA, which was attenuated by kaempferol and kaempferide (5, 10 and 20 μM). Western blot analysis demonstrated that kaempferol and kaempferide reduced expression of lipogenesis-related proteins, including sterol regulatory element-binding protein 1 (SREBP1), fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD-1). Expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT enhancer binding proteins β (C/EBPβ), two adipogenic transcription factors, was also decreased by kaempferol and kaempferide treatment. In addition, western blot analysis also demonstrated that kaempferol and kaempferide reduced expression of heme oxygenase-1 (HO-1) and nuclear transcription factor-erythroid 2-related factor 2 (Nrf2). Molecular docking was performed to identify the direct molecular targets of kaempferol and kaempferide, and their binding to SCD-1, a critical regulator in lipid metabolism, was revealed. Taken together, our findings demonstrate that kaempferol and kaempferide could attenuate OA-induced lipid accumulation and oxidative stress in HepG2 cells, which might benefit the treatment of NAFLD.


Author(s):  
Hui Wei ◽  
Wan-Jie Cai ◽  
Hao-Kun Liu ◽  
Dong Han ◽  
Xiao-Ming Zhu ◽  
...  

2020 ◽  
Vol 178 (2) ◽  
pp. 311-324
Author(s):  
Marisa Pfohl ◽  
Lishann Ingram ◽  
Emily Marques ◽  
Adam Auclair ◽  
Benjamin Barlock ◽  
...  

Abstract Perfluoroalkyl substances (PFAS) represent a family of environmental toxicants that have infiltrated the living world. This study explores diet-PFAS interactions and the impact of perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic (PFHxS) on the hepatic proteome and blood lipidomic profiles. Male C57BL/6J mice were fed with either a low-fat diet (10.5% kcal from fat) or a high fat (58% kcal from fat) high carbohydrate (42 g/l) diet with or without PFOS or PFHxS in feed (0.0003% wt/wt) for 29 weeks. Lipidomic, proteomic, and gene expression profiles were determined to explore lipid outcomes and hepatic mechanistic pathways. With administration of a high-fat high-carbohydrate diet, PFOS and PFHxS increased hepatic expression of targets involved in lipid metabolism and oxidative stress. In the blood, PFOS and PFHxS altered serum phosphatidylcholines, phosphatidylethanolamines, plasmogens, sphingomyelins, and triglycerides. Furthermore, oxidized lipid species were enriched in the blood lipidome of PFOS and PFHxS treated mice. These data support the hypothesis that PFOS and PFHxS increase the risk of metabolic and inflammatory disease induced by diet, possibly by inducing dysregulated lipid metabolism and oxidative stress.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3231 ◽  
Author(s):  
Ling Hu ◽  
Kuan Tian ◽  
Tao Zhang ◽  
Chun-Hua Fan ◽  
Peng Zhou ◽  
...  

Chronic kidney disease (CKD) is problem that has become one of the major issues affecting public health. Extensive clinical data suggests that the prevalence of hyperlipidemia in CKD patients is significantly higher than in the general population. Lipid metabolism disorders can damage the renal parenchyma and promote the occurrence of cardiovascular disease (CVD). Cyanate is a uremic toxin that has attracted widespread attention in recent years. Usually, 0.8% of the molar concentration of urea is converted into cyanate, while myeloperoxidase (MPO) catalyzes the oxidation of thiocyanate to produce cyanate at the site of inflammation during smoking, inflammation, or exposure to environmental pollution. One of the important physiological functions of cyanate is protein carbonylation, a non-enzymatic post-translational protein modification. Carbamylation reactions on proteins are capable of irreversibly changing protein structure and function, resulting in pathologic molecular and cellular responses. In addition, recent studies have shown that cyanate can directly damage vascular tissue by producing large amounts of reactive oxygen species (ROS). Oxidative stress leads to the disorder of liver lipid metabolism, which is also an important mechanism leading to cirrhosis and liver fibrosis. However, the influence of cyanate on liver has remained unclear. In this research, we explored the effects of cyanate on the oxidative stress injury and abnormal lipid metabolism in mice and HL-7702 cells. In results, cyanate induced hyperlipidemia and oxidative stress by influencing the content of total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), superoxide dismutase (SOD), catalase (CAT) in liver. Cyanate inhibited NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and the phosphorylation of adenosine 5′monophosphate-activated protein kinase (AMPK), activated the mTOR pathway. Oxidative stress on the cells reduced significantly by treating with TBHQ, an antioxidant, which is also an activator of Nrf2. The activity of Nrf2 was rehabilitated and phosphorylation of mTOR decreased. In conclusion, cyanate could induce oxidative stress damage and lipid deposition by inhibiting Nrf2/HO-1 pathway, which was rescued by inhibitor of Nrf2.


Sign in / Sign up

Export Citation Format

Share Document