scholarly journals Bryophyllum pinnatum enhances the inhibitory effect of atosiban and nifedipine on human myometrial contractility: an in vitro study

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
S. Santos ◽  
C. Haslinger ◽  
M. Mennet ◽  
U. von Mandach ◽  
M. Hamburger ◽  
...  

Abstract Background The herbal medicine Bryophyllum pinnatum has been used as a tocolytic agent in anthroposophic medicine and, recently, in conventional settings alone or as an add-on medication with tocolytic agents such as atosiban or nifedipine. We wanted to compare the inhibitory effect of atosiban and nifedipine on human myometrial contractility in vitro in the absence and in the presence of B. pinnatum press juice (BPJ). Methods Myometrium biopsies were collected during elective Caesarean sections. Myometrial strips were placed under tension into an organ bath and allowed to contract spontaneously. Test substances alone and at concentrations known to moderately affect contractility in this setup, or in combination, were added to the organ bath, and contractility was recorded throughout the experiments. Changes in the strength (measured as area under the curve (AUC) and amplitude) and frequency of contractions after the addition of all test substances were determined. Cell viability assays were performed with the human myometrium hTERT-C3 and PHM1–41 cell lines. Results BPJ (2.5 μg/mL), atosiban (0.27 μg/mL), and nifedipine (3 ng/mL), moderately reduced the strength of spontaneous myometrium contractions. When BPJ was added together with atosiban or nifedipine, inhibition of contraction strength was significantly higher than with the tocolytics alone (p = 0.03 and p < 0.001, respectively). In the case of AUC, BPJ plus atosiban promoted a decrease to 48.8 ± 6.3% of initial, whereas BPJ and atosiban alone lowered it to 70.9 ± 4.7% and to 80.9 ± 4.1% of initial, respectively. Also in the case of AUC, BPJ plus nifedipine promoted a decrease to 39.9 ± 4.6% of initial, at the same time that BPJ and nifedipine alone lowered it to 78.9 ± 3.8% and 71.0 ± 3.4% of initial. Amplitude data supported those AUC data. The inhibitory effects of BPJ plus atosiban and of BPJ plus nifedipine on contractions strength were concentration-dependent. None of the test substances, alone or in combination, decreased myometrial cell viability. Conclusions BPJ enhances the inhibitory effect of atosiban and nifedipine on the strength of myometrial contractions, without affecting myometrium tissue or cell viability. The combination treatment of BPJ with atosiban or nifedipine has therapeutic potential.

Planta Medica ◽  
2018 ◽  
Vol 85 (05) ◽  
pp. 385-393 ◽  
Author(s):  
Stefanie Santos ◽  
Christian Haslinger ◽  
Kristian Klaic ◽  
Maria Faleschini ◽  
Mónica Mennet ◽  
...  

Abstract Bryophyllum pinnatum has been used since the 1970s to prevent premature labour, first in anthroposophic hospitals and, more recently, also in the main Swiss perinatal centres. However, it is not known which compounds in B. pinnatum leaves contribute to the tocolytic effect. Here we studied the effects of a flavonoid-enriched fraction, the corresponding flavonoid aglycon mixture, a bufadienolide-enriched fraction, and B. pinnatum leaf press juice on human myometrial contractility in vitro. The strength (area under the curve and amplitude) and frequency of contractions were recorded using strips of human myometrium mounted in an organ bath system. Cell viability assays were performed with the human myometrium hTERT-C3 and PHM1 – 41 cell lines. Repeated addition of the flavonoid-enriched fraction, flavonoid aglycon mixture, bufadienolide-enriched fraction, or B. pinnatum leaf press juice led to a progressive decrease of contraction strength, without jeopardising the vitality of myometrium strips. The bufadienolide-enriched fraction was the most active, since 1 µg/mL of the bufadienolide-enriched fraction lowered the area under the curve to 40.1 ± 11.8% of the initial value, whereas 150 µg/mL of the flavonoid-enriched fraction, 6.2 µg/mL of the flavonoid aglycon mixture, and 10 µg/mL of the B. pinnatum leaf press juice were required to achieve comparable inhibition. A progressive increase of contraction frequency was observed, except in the case of the flavonoid aglycon mixture, which did not affect frequency. None of the test substances decreased myometrial cell viability, even at concentrations of 500 µg/mL of the flavonoid-enriched fraction, 40 µg/mL of the flavonoid aglycon mixture, 3.8 µg/mL of the bufadienolide-enriched fraction, and 75 µg/mL of the B. pinnatum leaf press juice, i.e., higher than those used in the myometrium experiments. Given the concentrations of flavonoids in the flavonoid-enriched fraction and B. pinnatum leaf press juice, and of bufadienolides in the bufadienolide-enriched fraction and B. pinnatum leaf press juice, it appears that bufadienolides may be mainly responsible for the relaxant effect.


2017 ◽  
Author(s):  
S Santos ◽  
C Haslinger ◽  
M Hamburger ◽  
M Mennet ◽  
O Potterat ◽  
...  

2019 ◽  
Author(s):  
S Santos ◽  
C Haslinger ◽  
K Kalic ◽  
MT Faleschini ◽  
M Mennet ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1128.1-1129
Author(s):  
A. Mavropoulos ◽  
S. Tsiogkas ◽  
D. Skyvalidas ◽  
C. Liaskos ◽  
A. Roussaki-Schulze ◽  
...  

Background:Delphinidin, a dietary anthocyanidin and powerful anti-oxidant from pigmented fruits and vegetables, has broad anti-inflammatory properties. In a human skin model of psoriasis, delphinidin reduced expression of proliferative and inflammatory markers (1).Objectives:The rationale of our study was to assess whether delphinidin can in vitro suppress IL-17 and IFN-γ production in peripheral blood mononuclear cell (PBMC) subsets from patients with psoriatic arthritis (PsA).Methods:PBMCs were obtained from 24 patients with PsA attending the outpatient clinic of the Department of Rheumatology/clinical Immunology at the University General Hospital of Larissa, Greece. 16 age- and sex-matched healthy volunteers were also included in the study. Delphinidin was supplemented at a concentration ranging from 1 to 50μg/ml, one hour prior to cell stimulation. Cell viability (Annexin V staining) and innate/adaptive lymphocyte subpopulations were assessed by flow cytometry with a panel of fluorochrome-conjugated antibodies against CD56, CD3, CD4 and CD8. Intracellular expression of IL-17 and IFN-γ was measured following PMA/ionomycin stimulation for 5 hours using standard cell permeabilization protocols and monoclonal antibodies against IL-17 and IFN-γResults:Delphinidin at concentration ≥10 μg/ml sharply diminished IL-17-production by CD4(+) T cells (Th17) and CD56(+)CD3(+) (NKT) cells from patients with psoriatic arthritis and normal controls (p≤0.05). IFN-γ producing T (CD4 and CD8) cells, as well as NK and NKT cells were also dose-dependently suppressed following delphinidin pre-incubation in both patients and healthy controls. Inhibition of IFN-γ(+) cells ranged from 27 to 69% and peaked at delphinidin concentration 20-50μg/ml. The inhibitory effect of delphinidin on IL-17 and IFN-γ producing lymphocytes was not due to compromised cell viability, as assessed by annexin V binding.Conclusion:Delphinidin exerts, in a dose-dependent manner, a profound in vitro inhibitory effect on T cell and NKT cell IL-17 and IFN-γ production in PsA, and therefore, it may be used as a dietary immunosuppressant, complementary to standard treatment.References:[1]Chamcheu JC Skin Pharmacol Physiol. 2015;28(4):177-88. doi: 10.1159/000368445Disclosure of Interests:ATHANASIOS MAVROPOULOS: None declared, Sotirios Tsiogkas: None declared, Dimitrios Skyvalidas: None declared, Christos Liaskos: None declared, Aggeliki Roussaki-Schulze Grant/research support from: Received a grant to support the educational and research activities of the department from Genesis Pharma (2018), Speakers bureau: Received honoraria from Genesis Pharma and Janssen(2017) and from Roche and Pharmaserve Lilly(2018), Efterpi Zafiriou Speakers bureau: Received honoraria from Genesis Pharma, Abbvie, Novartis, Roche, Jansses(2017) and Novartis, Abbvie(2018), Dimitrios Bogdanos: None declared, Lazaros Sakkas Grant/research support from: Received a grant to support the educational and research activities of the department from Bristol-Meyers Squib, Speakers bureau: Received honoraria from Actellion(2018), Janssen(2017), Novartis(2017), Sanofi-Aventis(2018), Abbvie(2017) and Roche(2017)


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Terézia Kamasová ◽  
Ana Sofia Abreu ◽  
Fátima Paiva-Martins ◽  
Luís Belo ◽  
Alice Santos-Silva ◽  
...  

Abstract Background and Aims Renal hypoxia plays a key role in the pathophysiology of acute kidney injury and in the progression of chronic kidney disease, potentiating other important risk factors for renal disease, such as oxidative stress, renal fibrosis, and inflammation. Hydroxytyrosol (HT) is a phenolic compound extracted from olives and olive-derived products, that has been shown to detain potent in vitro antioxidant and anti-inflammatory activity. The aim of this study was to evaluate the preventive therapeutic potential of HT on a cellular model of renal hypoxia. Method A cell line of normal adult proximal tubular epithelium (HK-2 cell line) was used to determine the effects of the chemical induction of hypoxia with cobalt chloride (CoCl2), as well as the preventive potential of HT on the elicited effects. For this purpose, HK-2 cells were exposed for 24 h to 254 µM CoCl2, to mimic the hypoxic conditions, or pre-incubated for 1 h with 5 µM HT and further exposed to the CoCl2 for 24 h more. Cell viability was assessed by the thiazolyl blue tetrazolium bromide reduction assay. Oxidative status was evaluated by the measurement of reactive oxygen and nitrogen species (ROS and RNS) and reduced glutathione (GSH) levels, by using standardized fluorometric and colorimetric assays. The expression of several genes related to the hypoxic, inflammatory, and fibrotic responses was determined by quantitative polymerase chain reaction (PCR). Results CoCl2-exposed HK-2 cells (hypoxic conditions) showed a significant decrease in cell viability (p &lt; 0.0001 vs. control), and a disruption of the oxidative status, characterized by an increase of ROS and RNS production of about 6-fold over control cells (p &lt; 0.0001) and a decrease in GSH intracellular levels of nearly 50 % (p &lt; 0.05). Although the pre-exposure to HT showed no significant effects on the loss of cell viability elicited by CoCl2, the presence of HT prior to induction of hypoxia reduced the generation of ROS and RNS (p &lt; 0.05 for HT + CoCl2 vs. CoCl2) and prevented the GSH depletion (GSH levels for HT + CoCl2 were similar to those of control) elicited by CoCl2. When compared to control cells, CoCl2-exposed HK-2 cells also showed increased expression of genes related to hypoxia (HIF1A, p &lt; 0.05; GAPDH, p &lt; 0.0001), as well as of modulators of inflammation (IL6, p &lt; 0.0001) and fibrosis (TGFB1, p &lt; 0.05). Importantly, the expression of these genes was partially or even totally suppressed by the pre-exposure of cells to HT (GAPDH, p &lt; 0.01 for HT + CoCl2 vs. CoCl2; expression of HIF1A, IL6 and TGFB1 for HT + CoCl2 was similar to that of control). Conclusion Our data supports the potential for a multiplicity of preventive effects of HT, providing antioxidant, anti-inflammatory and anti-fibrotic defenses to renal cells under hypoxic conditions. Importantly, the development of safe and effective therapeutic approaches based on phytochemicals such as HT, may present substantial advantages for renal patients over synthetic drugs, including fewer side effects, significantly lower price, and ease of administration in the form of dietary supplements. Acknowledgments This work was supported by Applied Molecular Biosciences Unit (UCIBIO), financed by national funds from FCT/MCTES (UIDB/04378/2020), by North Portugal Regional Coordination and Development Commission (CCDR-N)/NORTE2020/Portugal 2020 (Norte-01-0145-FEDER-000024), and co-financed by FCT/MCTES (PTDC/OCE-ETA/32492/2017) and FEDER/COMPETE 2020 (POCI-01-0145-FEDER-032492).


2021 ◽  
Vol 11 (22) ◽  
pp. 11028
Author(s):  
Mohd W. A. Khan ◽  
Ahmed A. Otaibi ◽  
Arwa F. M. Alhumaid ◽  
Abdulmohsen K. D. Alsukaibi ◽  
Asma K. Alshamari ◽  
...  

Glycation of various biomolecules contributes to structural changes and formation of several high molecular weight fluorescent and non-fluorescent, advanced glycation end products (AGEs). AGEs and glycation are involved in various health complications. Synthetic medicines, including metformin, have several adverse effects. Natural products and their derivatives are used in the treatment of various diseases due to their significant therapeutic qualities. Allium sativum (garlic) is used in traditional medicines because of its antioxidant, anti-inflammatory, and anti-diabetic properties. This study aimed to determine the anti-glycating and AGEs inhibitory activities of garlic. Biochemical and biophysical analyses were performed for in vitro incubated human serum albumin (HSA) with 0.05 M of glucose for 1, 5, and 10 weeks. Anti-glycating and AGEs inhibitory effect of garlic was investigated in glycated samples. Increased biochemical and biophysical changes were observed in glycated HSA incubated for 10 weeks (G-HSA-10W) as compared to native HSA (N-HSA) as well as glycated HSA incubated for 1 (G-HSA-1W) and 5 weeks (G-HSA-5W). Garlic extract with a concentration of ≥6.25 µg/mL exhibited significant inhibition in biophysical and biochemical changes of G-HSA-10W. Our findings demonstrated that garlic extract has the ability to inhibit biochemical and biophysical changes in HSA that occurred due to glycation. Thus, garlic extract can be used against glycation and AGE-related health complications linked with chronic diseases in diabetic patients due to its broad therapeutic potential.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
F. Füeg ◽  
S. Santos ◽  
C. Haslinger ◽  
B. Stoiber ◽  
L. Schäffer ◽  
...  

Abstract Background Oxytocin receptor (OXTR) gene variants have been shown to affect the prevalence of preterm birth, mode of delivery and oxytocin (OXT) requirements for labor induction and augmentation. We hypothesized that this might be associated with different myometrium responses to oxytocin. Our aim was to investigate the influence of a selection of eight OXTR gene single nucleotide variants on oxytocin-induced stimulation of human myometrium contractility in vitro. Methods Human myometrium biopsies were collected during elective cesarean sections at term, if patients had given informed consent. Myometrial strips were submerged under tension in an organ bath and allowed to contract; the remaining material was stored at − 80 °C for further determination of relevant genetics and mRNA level. The area under the curve (AUC) of all contractions taking place in the absence of OXT and of those occurring upon OXT addition (for 30 min each) was measured. OXT stimulation, defined as the ratio between AUC measurements after OXT addition and those in the absence of OXT was calculated for each strip. TaqMan™ Assays were used to detect the allele distribution of the eight OXTR variants and to determine the relative amounts of OXTR-mRNA in the samples. For each variant, oxytocin stimulation of contractility was compared between samples homozygous for the reference allele (reference group) and samples with at least one variant allele (variant group) by linear regression. Results Sixty samples were included in the present study. For rs1042778, rs11706648, rs4686301, rs53576, rs237895, and rs237902, OXT stimulation was similar in the reference and in the variant groups. However, the values of OXT stimulation differed significantly between the reference and the variant groups for rs4686302 (3.1 vs. 4.1 times; p = 0.022) and rs237888 (3.2 vs. 5.5 times; p = 0.001). No significant differences between the levels of OXTR-mRNA in the various reference and corresponding variant groups were detected. Conclusions Patients with variant alleles of rs237888 and/or rs4686302 may be more sensitive to oxytocin stimulation, explaining why these sequence variants have been associated with lower cesarean section prevalence and premature birth, respectively.


2008 ◽  
Vol 36 (6) ◽  
pp. 802-806 ◽  
Author(s):  
A. S. Thind ◽  
R. J. Turner

The aim of this study was to evaluate the direct effect of propofol (di-isopropyl phenol) on the contractile properties of gravid human uterine muscle. Six specimens of uterine muscle were obtained from term parturients undergoing elective lower segment caesarean section. Small strips (1 × 2 x 12 mm) of muscle were prepared and suspended in an organ bath containing oxygenated Kreb's solution at 36.5°C. Following preparation, spontaneous regular contractions developed at a rate of one contraction every six to 10 minutes. Force of contraction was recorded continuously using an isometric tension transducer. Following baseline measurements, propofol was introduced into the bath at concentrations corresponding to 2 /μg/ml, 5 /μg/ml and 8 /μg/ml. The specimens were also exposed to intralipid in concentrations equivalent to that found in the 8 μ/ml solution of propofol to determine whether this additive influenced uterine contractility. Contractility (defined as area under the tension/time curve) was decreased to 89 ± 6.5% of control at 2 μg/ml 53±4.3% at 5 μ/ml and 45 ± 4.1% at 8 μg/ml. This decrease in contractility was statistically significant at concentrations >2 μg/ml. Intralipid did not significantly affect uterine contractility. The results of this study show that propofol decreases isolated human uterine muscle contractility in a dose-dependent manner.


Inflammasome ◽  
2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Xuesong Sang ◽  
Hongbin Wang ◽  
Yihui Chen ◽  
Qiuhong Guo ◽  
Ailing Lu ◽  
...  

AbstractInflammasomes are intracellular protein complexes that mediate maturation and secretion of the pro-inflammatory cytokines IL-1β and IL-18. Inflammasomes have been connected with various diseases, therefore the regulation of inflammasome activation is important for the development of novel therapies for many inflammatory syndromes. Vitamin C is an essential nutrient and has regulatory effects on immune cells. Here we report that vitamin C has an inhibitory effect on the activation of the NLRP3 inflammasome in vitro and in vivo. Mechanistically, this inhibition is through scavenging mitochondrial ROS but not through NF-κB inhibition. Moreover, specificity tests show that the AIM2 inflammasome and the NLRC4 inflammasome can also be inhibited by vitamin C. Our results have thus identified a new inflammasome regulator and provide therapeutic potential for inflammasome-associated diseases.


Reproduction ◽  
2005 ◽  
Vol 130 (4) ◽  
pp. 539-544 ◽  
Author(s):  
Averil Y Warren ◽  
Balwir Matharoo-Ball ◽  
Robert W Shaw ◽  
Raheela N Khan

Reactive oxygen species (ROS) have the propensity to cause macromolecular damage with consequent modification of cellular function. We investigated the effects of two particular oxidants, superoxide (O2−) anions and hydrogen peroxide (H2O2), on oxytocin-induced myometrial contractility using biopsies from women undergoing Caesarean section at term gestation. Isometric tension recordings were performed and concentration–response curves derived after addition of test agents. A maximal reduction in myometrial contractility to 27.2 ± 4.5% of control was observed followed application of H2O2. The enzyme scavenger catalase (CAT) reduced the inhibitory effect of H2O2but had little effect at 10-fold lower concentrations. Addition of dialysed xanthine oxidase ± hypoxanthine significantly inhibited contractility to 23.8.0 ± 4.2% compared with control. Pre-incubation with superoxide dismutase and CAT diminished this effect. The non-specific potassium channel blocker, tetraethylammonium chloride (1 mM), had no effect on myometrial contractility. We conclude that human myometrium is susceptible to the effects of ROS, which may be produced by reperfusion–ischaemic episodes during labour. Our findings could, in part, explain the weak or prolonged depression of contractions characteristic of myometrial dysfunction culminating in difficult labours.


Sign in / Sign up

Export Citation Format

Share Document