scholarly journals Effects of Green cardamom (Elettaria cardamomum Maton) and its combination with cyclophosphamide on Ehrlich solid tumors

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rafa S. Almeer ◽  
Meshael Alnasser ◽  
Nada Aljarba ◽  
Gadah I. AlBasher

Abstract Background Cardamom (Elettaria cardamomum) is a spice and exhibits potent antioxidant and biological activities through distinct molecular mechanisms. However, the anticancer effect of cardamom was not explored yet in Ehrlich solid tumor (EST)-bearing mice. Objectives This investigation was aimed to evaluate the anti-cancer effects of green cardamom (GCar) alone or combined with the anti-cancer drug cyclophosphamide in an in vivo model to explore its mechanistic role in tumor cell death in EST-bearing mice. Methods Ehrlich ascites tumor cells were injected in the mice and 5 days later the animals treated with GCar and/or cyclophosphamide for 10 days. Twenty-four hours from the last treatment, animals were sacrificed for the different measurements. Results Data recorded for tumor size, percentage of tumor growth inhibition, tumor growth delay and mean survival time of EST-bearing mice demonstrated the effective role of GCar alone or combined with CPO as a promising anti-cancer agent because it reduced tumor size. GCar elevated the mean survival time of EST-bearing mice compared to that of untreated EST and EST + CPO groups. Analysis of qPCR mRNA gene and protein expression revealed that GCar alone or combined with CPO were promising anticancer agents. After the treatment of EST with GCar, the apoptotic-related genes and proteins were significantly modulated. GCar induced markedly significant decreases in oxidative stress biomarkers and a significant increment in glutathione levels and that of antioxidant enzymes. With a marked diminish in liver and kidney function biomarkers. Conclusion The results revealed that GCar could serve as an apoptotic stimulator agent, presenting a novel and potentially curative approach for cancer treatment, inducing fewer side effects than those of the commercially used anti-cancer drugs, such as CPO.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Yangying Liao ◽  
Haibo Luo ◽  
Zhizhong He ◽  
Yongpei Kuang ◽  
Peifen Chen ◽  
...  

To explore the antitumor effect of hypoxia-inducible factor-1α short hairpin RNA (HIF-1α shRNA) delivered by ultrasound targeted microbubble destruction (UTMD) and transcatheter arterial embolization (TAE) on rats with hepatic cancer. After the models of transplantation hepatoma were established, Wistar rats were randomly divided into 4 groups: Control group, UTMD group, TAE group, and UTMD+TAE group. Contrast-enhanced ultrasound (CEUS) was used to monitor tumor size on day 14 after four different treatments. Western blotting and immunohistochemistry were applied to measure the protein level of HIF-1α and VEGF in the hepatic cancer tissue. In comparison with UTMD+TAE group (21.25±10.68 days), the mean survival time was noticeably shorter in the Control group and TAE group (13.02±4.30 days and 15.03±7.32 days) (p<0.05, respectively). There was no statistical difference between UTMD+TAE group and UTMD group of the mean survival time (p>0.05). In addition, our results proved that the tumor sizes in UTMD+TAE group were obviously smaller than those in other groups (p<0.05, respectively). By CEUS, we clearly found that the tumor size was the smallest on day 14 in the UTMD+TAE group. The western blotting and immunohistochemistry results proved that the protein levels of HIF-1α and VEGF in UTMD+TAE group were obviously lower than those in TAE group and Control group on days 7 and 14 (p<0.05, respectively). However, there was no statistical difference between UTMD+TAE group and UTMD group (p>0.05). In this study we tried to explore the antitumor effect through a combination of UTMD-mediated HIF-1α shRNA transfection and TAE on rats with hepatic cancer. Our results showed that UTMD-mediated HIF-1α shRNA transfection and TAE can obviously silence HIF-1α and VEGF expression, thereby successfully inhibiting the growth of the tumor.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Emile P. Chen ◽  
Roy S. Song ◽  
Xueer Chen

Abstract Background Human tumor is a complex tissue with multiple heterogeneous hypoxic regions and significant cell-to-cell variability. Due to the complexity of the disease, the explanation of why anticancer therapies fail cannot be attributed to intrinsic or acquired drug resistance alone. Furthermore, there are inconsistent reports of hypoxia-induced kinase activities in different cancer cell-lines, where increase, decreases, or no change has been observed. Thus, we asked, why are there widely contrasting results in kinase activity under hypoxia in different cancer cell-lines and how does hypoxia play a role in anti-cancer drug sensitivity? Results We took a modeling approach to address these questions by analyzing the model simulation to explain why hypoxia driven signals can have dissimilar impact on tumor growth and alter the efficacy of anti-cancer drugs. Repeated simulations with varying concentrations of biomolecules followed by decision tree analysis reveal that the highly differential effects among heterogeneous subpopulation of tumor cells could be governed by varying concentrations of just a few key biomolecules. These biomolecules include activated serine/threonine-specific protein kinases (pRAF), mitogen-activated protein kinase kinase (pMEK), protein kinase B (pAkt), or phosphoinositide-4,5-bisphosphate 3-kinase (pPI3K). Additionally, the ratio of activated extracellular signal-regulated kinases (pERK) or pAkt to its respective total was a key factor in determining the sensitivity of pERK or pAkt to hypoxia. Conclusion This work offers a mechanistic insight into how hypoxia can affect the efficacy of anti-cancer drug that targets tumor signaling and provides a framework to identify the types of tumor cells that are either sensitive or resistant to anti-cancer therapy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2698-2698
Author(s):  
Sajid Khan ◽  
Xuan Zhang ◽  
Dongwen Lv ◽  
Yonghan He ◽  
Peiyi Zhang ◽  
...  

Abstract The evasion of apoptosis, or programmed cell death, is a hallmark of cancer, which promotes tumor initiation and progression. The evasion is in part attributable to the over-expression of anti-apoptotic proteins in the Bcl-2 family. In addition, chemotherapy and radiation can upregulate the expression of the Bcl-2 family in cancer cells, which renders them more resistance to cancer therapy. The most common Bcl-2 family member over-expressed in many solid tumor cells and a fraction of leukemia and lymphoma cells is Bcl-XL and its expression is also highly correlated with resistance to cancer therapy independent of p53 status in many cancers. Therefore, Bcl-XL is one of the most important validated cancer cell targets. Inhibition of Bcl-XL with a small molecule inhibitor has been extensively exploited as a molecularly targeted therapeutic strategy against cancer, resulting in the discovery of several Bcl-2/XL and Bcl-XL inhibitors as promising anti-cancer drug candidates including navitoclax. Unfortunately, these inhibitors failed to become anticancer drugs because platelets are also dependent on Bcl-XL for survival. Therefore, inhibition of Bcl-XL with Bcl-2/XL and Bcl-XL inhibitors causes severe reduction in platelets or thrombocytopenia, an on-target and dose-limiting toxicity, which prevents their use as an effective anticancer drug in clinic. To overcome this problem, we generated a series of novel bifunctional molecules that targeting Bcl-XL to the ubiquitin-proteasome system (UPS) for degradation. These synthetic proteolytic compounds, termed synthetic proteolytics (Syntholytics) or proteolysis targeting chimeras (PROTACs), were rationally designed to recruit the Von Hippel Lindau (VHL) E3 ligase to ubiquitinate Bcl-XL for degradation by the proteasome. Because VHL is minimally expressed in platelets, our Bcl-XL Syntholytics can selectively induce Bcl-XL degradation in various cancer cells but not in platelets. Amongst these Bcl-XL Syntholytics, DT2216 was found to be the most potent in inducing Bcl-XL degradation leading to the loss of viability of Bcl-XL-dependent T-ALL MOLT-4 cells at nanomolar concentrations but did not cause any platelet toxicity. Compared to navitoclax, DT2216 is more potent in induction of apoptosis in a variety of cancer and leukemia cells in vitro in a caspase-dependent manner. Furthermore, our in vivo studies in immunocompromised mice revealed that DT2216 at 15 mg/kg/wk potently inhibited tumor growth in Bcl-XL-dependent MOLT-4 T-ALL xenografts as a single agent whereas navitoclax had no significant effect at the same dosage. Dosing with DT2216 at 15 mg/kg every four days significantly regressed larger established MOLT-4 T-ALL tumors that failed to respond to navitoclax treatment. To assess the therapeutic potential of DT2216 in combination with other Bcl-2 family inhibitors, we employed the Bcl-2/xl dependent NCI-H146 small cell lung cancer cells and the Mcl1/Bcl-xl dependent multiple myeloma EJM cells. The combination of DT2216 with Bcl-2 inhibitor (ABT199) or Mcl-1 inhibitor (S63845) synergistically reduced the viability of H146 and EJM cells, respectively. DT2216 in combination with ABT199 effectively inhibited tumor growth in H146 xenografts. Collectively, our findings suggest that targeting Bcl-XL using Bcl-XL Syntholytics can selectively kill Bcl-XL-dependent T-ALL cells and various solid tumor cells without causing significant platelet toxicity. Moreover, the combination of Bcl-XL Syntholytics with other Bcl-2 protein inhibitors could be used to effectively target multiple cancer types including both hematological and solid tumors. Therefore, Bcl-XL Syntholytics have the potential to be developed as safer and more potent novel anti-cancer drugs. Keywords: Bcl-XL, VHL, Protein degradation, T-ALL, Cancer, Apoptosis Disclosures: S.K., X.Z., D.L., Y.H., P.Z., X. L., G. Z., and D.Z. are inventors of a pending patent application for use of Bcl-xl syntholytics as anti-cancer agents. R.H, G.Z. and D.Z. are co-founders of Dialectic Therapeutics that develops Bcl-xl syntholytics. Disclosures Khan: Dialectic Therapeutics: Patents & Royalties. Lv:Dialectic Therapeutics: Patents & Royalties. He:Dialectic Therapeutics: Patents & Royalties. Zhang:Dialectic Therapeutics: Patents & Royalties. Liu:Dialectic Therapeutics: Patents & Royalties. Konopleva:Stemline Therapeutics: Research Funding. Zheng:Dialectic Therapeutics: Consultancy, Equity Ownership, Patents & Royalties.


Xenobiotica ◽  
2009 ◽  
Vol 00 (00) ◽  
pp. 090901052053001-8
Author(s):  
K. Murai ◽  
H. Yamazaki ◽  
K. Nakagawa ◽  
R. Kawai ◽  
T. Kamataki

2010 ◽  
Author(s):  
N. Magnavita ◽  
I. lavicoli ◽  
V. Leso ◽  
A. Bergamaschi

2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


Sign in / Sign up

Export Citation Format

Share Document