scholarly journals An alternating active-dormitive strategy enables disadvantaged prey to outcompete the perennially active prey through Parrondo’s paradox

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tao Wen ◽  
Eugene V. Koonin ◽  
Kang Hao Cheong

Abstract Background Dormancy is widespread in nature, but while it can be an effective adaptive strategy in fluctuating environments, the dormant forms are costly due to the inability to breed and the relatively high energy consumption. We explore mathematical models of predator-prey systems, in order to assess whether dormancy can be an effective adaptive strategy to outcompete perennially active (PA) prey, even when both forms of the dormitive prey (active and dormant) are individually disadvantaged. Results We develop a dynamic population model by introducing an additional dormitive prey population to the existing predator-prey model which can be active (active form) and enter dormancy (dormant form). In this model, both forms of the dormitive prey are individually at a disadvantage compared to the PA prey and thus would go extinct due to their low growth rate, energy waste on the production of dormant prey, and the inability of the latter to grow autonomously. However, the dormitive prey can paradoxically outcompete the PA prey with superior traits and even cause its extinction by alternating between the two losing strategies. We observed higher fitness of the dormitive prey in rich environments because a large predator population in a rich environment cannot be supported by the prey without adopting an evasive strategy, that is, dormancy. In such environments, populations experience large-scale fluctuations, which can be survived by dormitive but not by PA prey. Conclusion We show that dormancy can be an effective adaptive strategy to outcompete superior prey, recapitulating the game-theoretic Parrondo’s paradox, where two losing strategies combine to achieve a winning outcome. We suggest that the species with the ability to switch between the active and dormant forms can dominate communities via competitive exclusion.

2020 ◽  
Vol 18 (1) ◽  
pp. 458-475
Author(s):  
Na Zhang ◽  
Yonggui Kao ◽  
Fengde Chen ◽  
Binfeng Xie ◽  
Shiyu Li

Abstract A predator-prey model interaction under fluctuating water level with non-selective harvesting is proposed and studied in this paper. Sufficient conditions for the permanence of two populations and the extinction of predator population are provided. The non-negative equilibrium points are given, and their stability is studied by using the Jacobian matrix. By constructing a suitable Lyapunov function, sufficient conditions that ensure the global stability of the positive equilibrium are obtained. The bionomic equilibrium and the optimal harvesting policy are also presented. Numerical simulations are carried out to show the feasibility of the main results.


1995 ◽  
Vol 32 (01) ◽  
pp. 274-277
Author(s):  
John Coffey

A new stochastic predator-prey model is introduced. The predator population X(t) is described by a linear birth-and-death process with birth rate λ 1 X and death rate μ 1 X. The prey population Y(t) is described by a linear birth-and-death process in which the birth rate is λ 2 Y and the death rate is . It is proven that and iff


2010 ◽  
Vol 18 (02) ◽  
pp. 399-435 ◽  
Author(s):  
KRISHNA PADA DAS ◽  
SAMRAT CHATTERJEE ◽  
J. CHATTOPADHYAY

Eco-epidemiological models are now receiving much attention to the researchers. In the present article we re-visit the model of Holling-Tanner which is recently modified by Haque and Venturino1 with the introduction of disease in prey population. Density dependent disease-induced predator mortality function is an important consideration of such systems. We extend the model of Haque and Venturino1 with density dependent disease-induced predator mortality function. The existence and local stability of the equilibrium points and the conditions for the permanence and impermanence of the system are worked out. The system shows different dynamical behaviour including chaos for different values of the rate of infection. The model considered by Haque and Venturino1 also exhibits chaotic nature but they did not shed any light in this direction. Our analysis reveals that by controlling disease-induced mortality of predator due to ingested infected prey may prevent the occurrence of chaos.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Hui Zhang ◽  
Zhihui Ma ◽  
Gongnan Xie ◽  
Lukun Jia

A predator-prey model incorporating individual behavior is presented, where the predator-prey interaction is described by a classical Lotka-Volterra model with self-limiting prey; predators can use the behavioral tactics of rock-paper-scissors to dispute a prey when they meet. The predator behavioral change is described by replicator equations, a game dynamic model at the fast time scale, whereas predator-prey interactions are assumed acting at a relatively slow time scale. Aggregation approach is applied to combine the two time scales into a single one. The analytical results show that predators have an equal probability to adopt three strategies at the stable state of the predator-prey interaction system. The diversification tactics taking by predator population benefits the survival of the predator population itself, more importantly, it also maintains the stability of the predator-prey system. Explicitly, immediate contest behavior of predators can promote density of the predator population and keep the preys at a lower density. However, a large cost of fighting will cause not only the density of predators to be lower but also preys to be higher, which may even lead to extinction of the predator populations.


2018 ◽  
Vol 13 (03) ◽  
pp. 109-131
Author(s):  
Anjana Das ◽  
M. Pal

In this paper, we have proposed and analyzed an agricultural pest control system. For this purpose, an eco-epidemiological type predator–prey model has been proposed with the consideration of a sound predator population and two classes of pest populations namely susceptible pest and infected pest. Further to consider uncertainty, we modify our model and transform it into a fuzzy system with incorporation of imprecise parameters. The dynamical behavior of the proposed model has been investigated by examining the existence and stability criteria of all feasible equilibria. An optimal control problem is formed by considering the pesticide control as the control parameter and then the problem is solved both theoretically and numerically with the help of some computer simulation works.


Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Y. Tian ◽  
H. M. Li

In presence of predator population, the prey population may significantly change their behavior. Fear for predator population enhances the survival probability of prey population, and it can greatly reduce the reproduction of prey population. In this study, we propose a predator-prey fishery model introducing the cost of fear into prey reproduction with Holling type-II functional response and prey-dependent harvesting and investigate the global dynamics of the proposed model. For the system without harvest, it is shown that the level of fear may alter the stability of the positive equilibrium, and an expression of fear critical level is characterized. For the harvest system, the existence of the semitrivial order-1 periodic solution and positive order- q ( q ≥ 1 ) periodic solution is discussed by the construction of a Poincaré map on the phase set, and the threshold conditions are given, which can not only transform state-dependent harvesting into a cycle one but also provide a possibility to determine the harvest frequency. In addition, to ensure a certain robustness of the adopted harvest policy, the threshold condition for the stability of the order- q periodic solution is given. Meanwhile, to achieve a good economic profit, an optimization problem is formulated and the optimum harvest level is obtained. Mathematical findings have been validated in numerical simulation by MATLAB. Different effects of different harvest levels and different fear levels have been demonstrated by depicting figures in numerical simulation using MATLAB.


Author(s):  
Riris Nur Patria Putri ◽  
Windarto Windarto ◽  
Cicik Alfiniyah

Predation is interaction between predator and prey, where predator preys prey. So predators can grow, develop, and reproduce. In order for prey to avoid predators, then prey needs a refuge. In this thesis, a predator-prey model with refuge factor using Holling type III response function which has three populations, i.e. prey population in the refuge, prey population outside the refuge, and predator population. From the model, three equilibrium points were obtained, those are extinction of the three populations which is unstable, while extinction of predator population and coexistence are asymptotic stable under certain conditions. The numerical simulation results show that refuge have an impact the survival of the prey.


2010 ◽  
Vol 15 (4) ◽  
pp. 473-491 ◽  
Author(s):  
A. K. Pal ◽  
G. P. Samanta

The present paper deals with the problem of a predator-prey model incorporating a prey refuge with disease in the prey-population. We assume the predator population will prefer only infected population for their diet as those are more vulnerable. Dynamical behaviours such as boundedness, permanence, local and global stabilities are addressed. We have also studied the effect of discrete time delay on the model. The length of delay preserving the stability is also estimated. Computer simulations are carried out to illustrate our analytical findings.


2016 ◽  
Vol 24 (02n03) ◽  
pp. 345-365 ◽  
Author(s):  
SUDIP SAMANTA ◽  
RIKHIYA DHAR ◽  
IBRAHIM M. ELMOJTABA ◽  
JOYDEV CHATTOPADHYAY

In this paper, we propose and analyze a predator–prey model with a prey refuge and additional food for predators. We study the impact of a prey refuge on the stability dynamics, when a constant proportion or a constant number of prey moves to the refuge area. The system dynamics are studied using both analytical and numerical techniques. We observe that the prey refuge can replace the predator–prey oscillations by a stable equilibrium if the refuge size crosses a threshold value. It is also observed that, if the refuge size is very high, then the extinction of the predator population is certain. Further, we observe that enhancement of additional food for predators prevents the extinction of the predator and also replaces the stable limit cycle with a stable equilibrium. Our results suggest that additional food for the predators enhances the stability and persistence of the system. Extensive numerical experiments are performed to illustrate our analytical findings.


Sign in / Sign up

Export Citation Format

Share Document