scholarly journals KLHL17/Actinfilin, a brain-specific gene associated with infantile spasms and autism, regulates dendritic spine enlargement

2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Hsiao-Tang Hu ◽  
Tzyy-Nan Huang ◽  
Yi-Ping Hsueh

Abstract Background Dendritic spines, the actin-rich protrusions emerging from dendrites, are the subcellular locations of excitatory synapses in the mammalian brain. Many actin-regulating molecules modulate dendritic spine morphology. Since dendritic spines are neuron-specific structures, it is reasonable to speculate that neuron-specific or -predominant factors are involved in dendritic spine formation. KLHL17 (Kelch-like 17, also known as Actinfilin), an actin-binding protein, is predominantly expressed in brain. Human genetic study has indicated an association of KLHL17/Actinfilin with infantile spasms, a rare form of childhood epilepsy also resulting in autism and mental retardation, indicating that KLHL17/Actinfilin plays a role in neuronal function. However, it remains elusive if and how KLHL17/Actinfilin regulates neuronal development and brain function. Methods Fluorescent immunostaining and electrophysiological recording were performed to evaluate dendritic spine formation and activity in cultured hippocampal neurons. Knockdown and knockout of KLHL17/Actinfilin and expression of truncated fragments of KLHL17/Actinfilin were conducted to investigate the function of KLHL17/Actinfilin in neurons. Mouse behavioral assays were used to evaluate the role of KLHL17/Actinfilin in brain function. Results We found that KLHL17/Actinfilin tends to form circular puncta in dendritic spines and are surrounded by or adjacent to F-actin. Klhl17 deficiency impairs F-actin enrichment at dendritic spines. Knockdown and knockout of KLHL17/Actinfilin specifically impair dendritic spine enlargement, but not the density or length of dendritic spines. Both N-terminal Broad-Complex, Tramtrack and Bric-a-brac (BTB) domain and C-terminal Kelch domains of KLHL17/Actinfilin are required for F-actin remodeling and enrichment at dendritic spines, as well as dendritic spine enlargement. A reduction of postsynaptic and presynsptic markers at dendritic spines and altered mEPSC profiles due to Klhl17 deficiency evidence impaired synaptic activity in Klhl17-deficient neurons. Our behavioral assays further indicate that Klhl17 deficiency results in hyperactivity and reduced social interaction, strengthening evidence for the physiological role of KLHL17/Actinfilin. Conclusion Our findings provide evidence that KLHL17/Actinfilin modulates F-actin remodeling and contributes to regulation of neuronal morphogenesis, maturation and activity, which is likely relevant to behavioral impairment in Klhl17-deficient mice. Trial registration Non-applicable.

2018 ◽  
Vol 25 (1) ◽  
pp. 27-47 ◽  
Author(s):  
Ivar S. Stein ◽  
Karen Zito

Dynamic modification of synaptic connectivity in response to sensory experience is a vital step in the refinement of brain circuits as they are established during development and modified during learning. In addition to the well-established role for new spine growth and stabilization in the experience-dependent plasticity of neural circuits, dendritic spine elimination has been linked to improvements in learning, and dysregulation of spine elimination has been associated with intellectual disability and behavioral impairment. Proper brain function requires a tightly regulated balance between spine formation and spine elimination. Although most studies have focused on the mechanisms of spine formation, considerable progress has been made recently in delineating the neural activity patterns and downstream molecular mechanisms that drive dendritic spine elimination. Here, we review the current state of knowledge concerning the signaling pathways that drive dendritic spine shrinkage and elimination in the cerebral cortex and we discuss their implication in neuropsychiatric and neurodegenerative disease.


2020 ◽  
Vol 382 (1) ◽  
pp. 185-199 ◽  
Author(s):  
Marta Zagrebelsky ◽  
Charlotte Tacke ◽  
Martin Korte

Abstract Dendritic spines are tiny membrane specialization forming the postsynaptic part of most excitatory synapses. They have been suggested to play a crucial role in regulating synaptic transmission during development and in adult learning processes. Changes in their number, size, and shape are correlated with processes of structural synaptic plasticity and learning and memory and also with neurodegenerative diseases, when spines are lost. Thus, their alterations can correlate with neuronal homeostasis, but also with dysfunction in several neurological disorders characterized by cognitive impairment. Therefore, it is important to understand how different stages in the life of a dendritic spine, including formation, maturation, and plasticity, are strictly regulated. In this context, brain-derived neurotrophic factor (BDNF), belonging to the NGF-neurotrophin family, is among the most intensively investigated molecule. This review would like to report the current knowledge regarding the role of BDNF in regulating dendritic spine number, structure, and plasticity concentrating especially on its signaling via its two often functionally antagonistic receptors, TrkB and p75NTR. In addition, we point out a series of open points in which, while the role of BDNF signaling is extremely likely conclusive, evidence is still missing.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Christopher A. Chapleau ◽  
Elena Maria Boggio ◽  
Gaston Calfa ◽  
Alan K. Percy ◽  
Maurizio Giustetto ◽  
...  

Alterations in dendritic spines have been documented in numerous neurodevelopmental disorders, including Rett Syndrome (RTT). RTT, an X chromosome-linked disorder associated with mutations inMECP2, is the leading cause of intellectual disabilities in women. Neurons inMecp2-deficient mice show lower dendritic spine density in several brain regions. To better understand the role of MeCP2 on excitatory spine synapses, we analyzed dendritic spines of CA1 pyramidal neurons in the hippocampus ofMecp2tm1.1Jaemale mutant mice by either confocal microscopy or electron microscopy (EM). At postnatal-day 7 (P7), well before the onset of RTT-like symptoms, CA1 pyramidal neurons from mutant mice showed lower dendritic spine density than those from wildtype littermates. On the other hand, at P15 or later showing characteristic RTT-like symptoms, dendritic spine density did not differ between mutant and wildtype neurons. Consistently, stereological analyses at the EM level revealed similar densities of asymmetric spine synapses in CA1stratum radiatumof symptomatic mutant and wildtype littermates. These results raise caution regarding the use of dendritic spine density in hippocampal neurons as a phenotypic endpoint for the evaluation of therapeutic interventions in symptomaticMecp2-deficient mice. However, they underscore the potential role of MeCP2 in the maintenance of excitatory spine synapses.


PLoS ONE ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. e0170113 ◽  
Author(s):  
C. A. Miermans ◽  
R. P. T. Kusters ◽  
C. C. Hoogenraad ◽  
C. Storm

2013 ◽  
Vol 24 (10) ◽  
pp. 1602-1613 ◽  
Author(s):  
Shuhei Ueda ◽  
Manabu Negishi ◽  
Hironori Katoh

In neuronal development, dendritic spine formation is important for the establishment of excitatory synaptic connectivity and functional neural circuits. Developmental deficiency in spine formation results in multiple neuropsychiatric disorders. Dock4, a guanine nucleotide exchange factor (GEF) for Rac, has been reported as a candidate genetic risk factor for autism, dyslexia, and schizophrenia. We previously showed that Dock4 is expressed in hippocampal neurons. However, the functions of Dock4 in hippocampal neurons and the underlying molecular mechanisms are poorly understood. Here we show that Dock4 is highly concentrated in dendritic spines and implicated in spine formation via interaction with the actin-binding protein cortactin. In cultured neurons, short hairpin RNA (shRNA)–mediated knockdown of Dock4 reduces dendritic spine density, which is rescued by coexpression of shRNA-resistant wild-type Dock4 but not by a GEF-deficient mutant of Dock4 or a truncated mutant lacking the cortactin-binding region. On the other hand, knockdown of cortactin suppresses Dock4-mediated spine formation. Taken together, the results show a novel and functionally important interaction between Dock4 and cortactin for regulating dendritic spine formation via activation of Rac.


2016 ◽  
Vol 113 (36) ◽  
pp. E5298-E5307 ◽  
Author(s):  
Padmini Rangamani ◽  
Michael G. Levy ◽  
Shahid Khan ◽  
George Oster

Transient spine enlargement (3- to 5-min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium influx caused by NMDA receptor activation. We have identified that a key feature of this signaling network is the paradoxical signaling loop. Paradoxical components act bifunctionally in signaling networks, and their role is to control both the activation and the inhibition of a desired response function (protein activity or spine volume). Using ordinary differential equation (ODE)-based modeling, we show that the dynamics of different regulators of transient spine expansion, including calmodulin-dependent protein kinase II (CaMKII), RhoA, and Cdc42, and the spine volume can be described using paradoxical signaling loops. Our model is able to capture the experimentally observed dynamics of transient spine volume. Furthermore, we show that actin remodeling events provide a robustness to spine volume dynamics. We also generate experimentally testable predictions about the role of different components and parameters of the network on spine dynamics.


2018 ◽  
Vol 115 (37) ◽  
pp. 9306-9311 ◽  
Author(s):  
Cora Sau Wan Lai ◽  
Avital Adler ◽  
Wen-Biao Gan

Fear conditioning-induced behavioral responses can be extinguished after fear extinction. While fear extinction is generally thought to be a form of new learning, several lines of evidence suggest that neuronal changes associated with fear conditioning could be reversed after fear extinction. To better understand how fear conditioning and extinction modify synaptic circuits, we examined changes of postsynaptic dendritic spines of layer V pyramidal neurons in the mouse auditory cortex over time using transcranial two-photon microscopy. We found that auditory-cued fear conditioning induced the formation of new dendritic spines within 2 days. The survived new spines induced by fear conditioning with one auditory cue were clustered within dendritic branch segments and spatially segregated from new spines induced by fear conditioning with a different auditory cue. Importantly, fear extinction preferentially caused the elimination of newly formed spines induced by fear conditioning in an auditory cue-specific manner. Furthermore, after fear extinction, fear reconditioning induced reformation of new dendritic spines in close proximity to the sites of new spine formation induced by previous fear conditioning. These results show that fear conditioning, extinction, and reconditioning induce cue- and location-specific dendritic spine remodeling in the auditory cortex. They also suggest that changes of synaptic connections induced by fear conditioning are reversed after fear extinction.


2022 ◽  
Author(s):  
Anika Heinze ◽  
Cara Schuldt ◽  
Sharof Khudayberdiev ◽  
Bas van Bommel ◽  
Daniela Hacker ◽  
...  

Abstract The vast majority of excitatory synapses are formed on small dendritic protrusions termed dendritic spines. Dendritic spines vary in size and density that are both crucial determinants of excitatory synaptic transmission. Aberrations in spine morphogenesis can compromise brain function and have been associated with neuropsychiatric disorders. Because actin filaments (F-actin) are the major structural component in spines, actin-binding proteins (ABP) that control F-actin dis-/assembly moved into the focus as critical regulators of brain function. Indeed, mouse studies identified the ABP cofilin1 as a key regulator of spine morphology, synaptic transmission and behavior. These studies emphasized the necessity for a tight control of cofilin1 to ensure proper brain function. We report spine enrichment of cyclase-associated protein 1 (CAP1), a conserved multidomain protein with largely unknown physiological functions. Super-resolution microscopy and live cell imaging of CAP1-deficient hippocampal neurons revealed impaired synaptic F-actin organization and dynamics associated with alterations in spine morphology. Mechanistically, we found that CAP1 cooperated with cofilin1 in spines and that its helical folded domain mediated this interaction. Moreover, our data proved functional interdependence of CAP1 and cofilin1 in control of spine morphology. In summary, we identified CAP1 as a novel regulator of the postsynaptic actin cytoskeleton that was essential for synaptic cofilin1 activity.


Sign in / Sign up

Export Citation Format

Share Document