scholarly journals Dendritic Spine Elimination: Molecular Mechanisms and Implications

2018 ◽  
Vol 25 (1) ◽  
pp. 27-47 ◽  
Author(s):  
Ivar S. Stein ◽  
Karen Zito

Dynamic modification of synaptic connectivity in response to sensory experience is a vital step in the refinement of brain circuits as they are established during development and modified during learning. In addition to the well-established role for new spine growth and stabilization in the experience-dependent plasticity of neural circuits, dendritic spine elimination has been linked to improvements in learning, and dysregulation of spine elimination has been associated with intellectual disability and behavioral impairment. Proper brain function requires a tightly regulated balance between spine formation and spine elimination. Although most studies have focused on the mechanisms of spine formation, considerable progress has been made recently in delineating the neural activity patterns and downstream molecular mechanisms that drive dendritic spine elimination. Here, we review the current state of knowledge concerning the signaling pathways that drive dendritic spine shrinkage and elimination in the cerebral cortex and we discuss their implication in neuropsychiatric and neurodegenerative disease.

2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Hsiao-Tang Hu ◽  
Tzyy-Nan Huang ◽  
Yi-Ping Hsueh

Abstract Background Dendritic spines, the actin-rich protrusions emerging from dendrites, are the subcellular locations of excitatory synapses in the mammalian brain. Many actin-regulating molecules modulate dendritic spine morphology. Since dendritic spines are neuron-specific structures, it is reasonable to speculate that neuron-specific or -predominant factors are involved in dendritic spine formation. KLHL17 (Kelch-like 17, also known as Actinfilin), an actin-binding protein, is predominantly expressed in brain. Human genetic study has indicated an association of KLHL17/Actinfilin with infantile spasms, a rare form of childhood epilepsy also resulting in autism and mental retardation, indicating that KLHL17/Actinfilin plays a role in neuronal function. However, it remains elusive if and how KLHL17/Actinfilin regulates neuronal development and brain function. Methods Fluorescent immunostaining and electrophysiological recording were performed to evaluate dendritic spine formation and activity in cultured hippocampal neurons. Knockdown and knockout of KLHL17/Actinfilin and expression of truncated fragments of KLHL17/Actinfilin were conducted to investigate the function of KLHL17/Actinfilin in neurons. Mouse behavioral assays were used to evaluate the role of KLHL17/Actinfilin in brain function. Results We found that KLHL17/Actinfilin tends to form circular puncta in dendritic spines and are surrounded by or adjacent to F-actin. Klhl17 deficiency impairs F-actin enrichment at dendritic spines. Knockdown and knockout of KLHL17/Actinfilin specifically impair dendritic spine enlargement, but not the density or length of dendritic spines. Both N-terminal Broad-Complex, Tramtrack and Bric-a-brac (BTB) domain and C-terminal Kelch domains of KLHL17/Actinfilin are required for F-actin remodeling and enrichment at dendritic spines, as well as dendritic spine enlargement. A reduction of postsynaptic and presynsptic markers at dendritic spines and altered mEPSC profiles due to Klhl17 deficiency evidence impaired synaptic activity in Klhl17-deficient neurons. Our behavioral assays further indicate that Klhl17 deficiency results in hyperactivity and reduced social interaction, strengthening evidence for the physiological role of KLHL17/Actinfilin. Conclusion Our findings provide evidence that KLHL17/Actinfilin modulates F-actin remodeling and contributes to regulation of neuronal morphogenesis, maturation and activity, which is likely relevant to behavioral impairment in Klhl17-deficient mice. Trial registration Non-applicable.


2013 ◽  
Vol 24 (10) ◽  
pp. 1602-1613 ◽  
Author(s):  
Shuhei Ueda ◽  
Manabu Negishi ◽  
Hironori Katoh

In neuronal development, dendritic spine formation is important for the establishment of excitatory synaptic connectivity and functional neural circuits. Developmental deficiency in spine formation results in multiple neuropsychiatric disorders. Dock4, a guanine nucleotide exchange factor (GEF) for Rac, has been reported as a candidate genetic risk factor for autism, dyslexia, and schizophrenia. We previously showed that Dock4 is expressed in hippocampal neurons. However, the functions of Dock4 in hippocampal neurons and the underlying molecular mechanisms are poorly understood. Here we show that Dock4 is highly concentrated in dendritic spines and implicated in spine formation via interaction with the actin-binding protein cortactin. In cultured neurons, short hairpin RNA (shRNA)–mediated knockdown of Dock4 reduces dendritic spine density, which is rescued by coexpression of shRNA-resistant wild-type Dock4 but not by a GEF-deficient mutant of Dock4 or a truncated mutant lacking the cortactin-binding region. On the other hand, knockdown of cortactin suppresses Dock4-mediated spine formation. Taken together, the results show a novel and functionally important interaction between Dock4 and cortactin for regulating dendritic spine formation via activation of Rac.


2000 ◽  
Vol 23 (2) ◽  
pp. 53-57 ◽  
Author(s):  
Menahem Segal ◽  
Eduard Korkotian ◽  
Diane D Murphy

Cells ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 75 ◽  
Author(s):  
Elkin Navarro Quiroz ◽  
Roberto Navarro Quiroz ◽  
Mostapha Ahmad ◽  
Lorena Gomez Escorcia ◽  
Jose Villarreal ◽  
...  

The defining characteristic of neural stem cells (NSCs) is their ability to multiply through symmetric divisions and proliferation, and differentiation by asymmetric divisions, thus giving rise to different types of cells of the central nervous system (CNS). A strict temporal space control of the NSC differentiation is necessary, because its alterations are associated with neurological dysfunctions and, in some cases, death. This work reviews the current state of the molecular mechanisms that regulate the transcription in NSCs, organized according to whether the origin of the stimulus that triggers the molecular cascade in the CNS is internal (intrinsic factors) or whether it is the result of the microenvironment that surrounds the CNS (extrinsic factors).


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 627 ◽  
Author(s):  
Fatma Ayhan ◽  
Genevieve Konopka

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition with no current treatment available. Although advances in genetics and genomics have identified hundreds of genes associated with ASD, very little is known about the pathophysiology of ASD and the functional contribution of specific genes to ASD phenotypes. Improved understanding of the biological function of ASD-associated genes and how this heterogeneous group of genetic variants leads to the disease is needed in order to develop therapeutic strategies. Here, we review the current state of ASD research related to gene discovery and examples of emerging molecular mechanisms (protein translation and alternative splicing). In addition, we discuss how patient-derived three-dimensional brain organoids might provide an opportunity to model specific genetic variants in order to define molecular and cellular defects that could be amenable for developing and screening personalized therapies related to ASD.


Sign in / Sign up

Export Citation Format

Share Document